Learning manipulation skills from open surgery provides more flexible access to the organ targets in the abdomen cavity and this could make the surgical robot working in a highly intelligent and friendly manner. Teaching by demonstration (TbD) is capable of transferring the manipulation skills from human to humanoid robots by employing active learning of multiple demonstrated tasks. This work aims to transfer motion skills from multiple human demonstrations in open surgery to robot manipulators in robot-assisted minimally invasive surgery (RA-MIS) by using TbD. However, the kinematic constraint should be respected during the performing of the learned skills by using a robot for minimally invasive surgery. In this article, we propose a novel methodology by integrating the cognitive learning techniques and the developed control techniques, allowing the robot to be highly intelligent to learn senior surgeons' skills and to perform the learned surgical operations in semiautonomous surgery in the future. Finally, experiments are performed to verify the efficiency of the proposed strategy, and the results demonstrate the ability of the system to transfer human manipulation skills to a robot in RA-MIS and also shows that the remote center of motion (RCM) constraint can be guaranteed simultaneously.
Toward Teaching by Demonstration for Robot-Assisted Minimally Invasive Surgery
Su H.;Mariani A.;Ovur S. E.;Menciassi A.;Ferrigno G.;De Momi E.
2021-01-01
Abstract
Learning manipulation skills from open surgery provides more flexible access to the organ targets in the abdomen cavity and this could make the surgical robot working in a highly intelligent and friendly manner. Teaching by demonstration (TbD) is capable of transferring the manipulation skills from human to humanoid robots by employing active learning of multiple demonstrated tasks. This work aims to transfer motion skills from multiple human demonstrations in open surgery to robot manipulators in robot-assisted minimally invasive surgery (RA-MIS) by using TbD. However, the kinematic constraint should be respected during the performing of the learned skills by using a robot for minimally invasive surgery. In this article, we propose a novel methodology by integrating the cognitive learning techniques and the developed control techniques, allowing the robot to be highly intelligent to learn senior surgeons' skills and to perform the learned surgical operations in semiautonomous surgery in the future. Finally, experiments are performed to verify the efficiency of the proposed strategy, and the results demonstrate the ability of the system to transfer human manipulation skills to a robot in RA-MIS and also shows that the remote center of motion (RCM) constraint can be guaranteed simultaneously.File | Dimensione | Formato | |
---|---|---|---|
Ieee_TASE_preprint.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
9.75 MB
Formato
Adobe PDF
|
9.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.