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Abstract—Learning manipulation skills from open surgery
provides more flexible access to the organ targets in the abdomen
cavity and this could make the surgical robot working in a highly
intelligent and friendly manner. Teaching by Demonstration
(TbD) is capable of transferring the manipulation skills from
human to humanoid robots by employing active learning of mul-
tiple demonstrated tasks. This work aims to transfer motion skills
from multiple human demonstrations in open surgery to robot
manipulators in Robot-Assisted Minimally Invasive Surgery (RA-
MIS) by using TbD. However, the kinematic constraint should
be respected during the performing of the learned skills by
using a robot for Minimally Invasive Surgery. In this paper, we
propose a novel methodology by integrating the cognitive learning
techniques and the developed control techniques, allowing the
robot to be highly intelligent to learn senior surgeons’ skills and
to perform the learned surgical operations in semi-autonomous
surgery in the future. Finally, experiments are performed to
verify the efficiency of the proposed strategy and the results
demonstrate the ability of the system to transfer human ma-
nipulation skills to a robot in RA-MIS and also shows that the
remote center of motion (RCM) constraint can be guaranteed
simultaneously.

Note to Practitioners—This paper is inspired by limited access
to the manipulation of laparoscopic surgery under a kinematic
constraint at the point of incision. Current commercial surgical
robots are mostly operated by teleoperation, which is represent-
ing less autonomy on surgery. Assisting and enhancing the sur-
geon’s performance by increasing the autonomy of surgical robots
has fundamental importance. The technique of TbD is capable
of transferring the manipulation skills from human to humanoid
robots by employing active learning of multiple demonstrated
tasks. With the improved ability to interact with humans, such
as flexibility and compliance, the new generation of serial robots
become more and more popular in nonclinical research. Thus,
advanced control strategies are required by integrating cognitive
functions and learning techniques into the processes of surgical
operation between robots, surgeon and MIS. In this article, we
propose a novel methodology to model the manipulation skill
from multiple demonstrations and execute the learned operations
in RA-MIS by using a decoupled controller to respect the RCM
constraint exploiting the redundancy of the robot. The developed
control scheme has the following functionalities: 1) it enables the
3-D manipulation skill modeling after multiple demonstrations
of the surgical tasks in open surgery by integrating DTW and
GMM based DMP. 2) it maintains the RCM constraint in a
smaller safe area while performing the learned operation in RA-

*This work was supported by the European Commission Horizon 2020
research and innovation program, under the project SMARTsurg, grant agree-
ment No. 732515. (Corresponding author: Hang Su.)

1Hang Su, Salih Ertug Ovur, Giancarlo Ferrigno and Elena De Momi are
with the Dipartimento di Elettronica, Informazione e Bioingegneria, Politec-
nico di Milano, 20133, Milano, Italy. (e-mail: hang.su@polimi.it; saliher-
tug.ovur@polimi.it; giancarlo.ferrigno@polimi.it; elena.demomi@polimi.it).

2Andrea Mariani and Arianna Menciassi are with The BioRobotics
Institute, Scuola Superiore Sant‘Anna, 56127 Pisa, Italy. (e-mail: an-
drea.mariani@santannapisa.it; arianna.menciassi@santannapisa.it).

MIS. The developed control strategy can also be potentially used
in other industrial applications with a similar scenario.

Index Terms—Teaching by Demonstration, Dynamic Time
Warping, Dynamic Movement Primitive, Remote Center of Mo-
tion, Robot-Assisted Minimally Invasive Surgery

I. INTRODUCTION

ROBOT-ASSISTED Minimally Invasive Surgery (RA-
MIS) has become more popular over recent years be-

cause of the benefits in advanced surgical precision, increased
movement range, improved proficiency, and enhanced vision
for surgeons [1], [2], [3]. Compared with the traditional open
surgery method, MIS can minimize the scale of the wound on
the patients’ body and further avoid causing damage to the
surrounding organs ad tissues. Benefit from this, the patient’s
recovery time after surgery can be significantly shortened,
further reducing the patient’s pain. However, there are several
critical issues needs to be considered. Firstly,the manipulation
features the surgical tool going through small abdominal
incisions with lengths less than an inch on the abdominal
wall in Minimally Invasive Surgery (MIS) [4], known as the
remote center of motion (RCM) limitation, resulting in a
kinematic constraint of surgical robot when conducting sur-
gical operations [5]. Compared to conventional open surgical
procedures, intensive training is required to train a novice
surgeon to perform MIS operations. Due to the complexity
of the skills in kinematic constraints, it allows an intuitive
access to surgical operations [6], [7]. In fact, the movement of
a surgical instrument is mirrored to the opposite way inside
the patient under the RCM constraint, as well as the applied
force depends on the distance from the entry point, which
is known as the “fulcrum effect”.Hence, to ensure the safety
during surgical operation, the movement of the surgical tool
should be constraint.

Furthermore, current commercialized surgical robots are
simply controlled by surgeons using teleoperation, and they
involve less autonomy in the surgical operation [8]. It is a
of great significance to assist and enhance the performance
of surgeons by increasing the autonomy of surgical robots.
Increasing the autonomy of surgical robots when conducting
such particular complex surgical operations, such as suturing
or knotting, can potentially reduce the length of surgical
procedures and reduce the workloads of surgeons to avoid
fatigue [9], [10], [11], [12], as well as improving tracking
accuracy with the development of technology in artificial
intelligence and cognition progress. In the past decade, the
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developed commercial medical systems which incorporate
autonomous and semi-autonomous technologies, as well as
experimental work on the automation of numerous surgical
procedures, have attracted much research interests [8]. In order
to meet this demand, it is necessary to transfer the manip-
ulation skills from human to surgical robots after showing
the correct execution of the trajectories. This approach is
known as Teaching by Demonstration (TbD) [13]. Calinon
et al. [14] had investigated how human motor skills can be
applied to the robot. Yang et al. [15] developed an interface
in the human-robot communication framework for human-
impedance adaptive skill transfer. Takayuki et al. developed an
automated knot tying system that can learn to tie knots after
just one demonstration done by a surgeonn[16]. However, a
single demonstration is lack of consistency, and they are not
enough to model a good manipulation skill library. Hence,
multiple demonstrations are essential for the extraction of
the manipulation skills and training of the skill model. For
example, in [17], Petitjean et al. adopted the time regular
function to describe their time correspondence and to calculate
the minimum distance among the test and reference template
to describe their time correspondence. Kormushev et al.
[18] studied the comprehension of the trajectory design for
the spherical obstacle by using Dynamic Motion Primitives
(DMP) modeling combined with the synthetic capacity dis-
cipline method. A learning framework for human-to-robot
adaptive manipulation skills was developed in [19]. Li et al.
[20] presented methodology to learn 2-D drawing skill from
multiple demonstrations.

During MIS surgical operation process, in addition to human
motion skill learning and transferring to the surgical robot,
the RCM constraint on the abdominal wall of the patients’
body [21] has to be respected [22] simultaneously. In general,
the RCM constraint can work actively or passively. The passive
constraint is physically enforced, while a software supported
controller needs to be considered for active constraints [23].
Since specialized surgical robots with passive RCM constraints
are expensive; therefore, their usage in hospitals is limited.
Different approaches have been introduced to solve the RCM
as a kinematic constraint [24]. Using serial robots and
achieving the RCM constraint with their redundancy [25], [26],
[27] is cost-effective and offers versatile workspace, which has
a high interest in the medical field, in particular for MIS. In
our previous works [23], [28], the RCM constraint had been
solved in a decoupled way by exploiting the redundancy of the
robot, and the controller had shown prominent performance
to guarantee the RCM constraint without any influence on the
surgical tooltip. It delivers the surgical robot operating in a
highly intelligent and friendly manner.

In this paper, a novel methodology by integrating cogni-
tive functions and learning techniques is considered to the
processes of surgical operation between robots, surgeon, and
MIS. Thanks to the proposed approach, manipulation skill
can be learned from multiple demonstrations and the learned
operations can be performed in RA-MIS by using a decoupled
controller to respect the RCM constraint by exploiting the
redundancy of the robot. Moreover, Dynamic Time Warping
(DTW) is adopted to process the data acquired from the

Fig. 1. Skill transfer from open surgery to MIS. The left picture depicts the
multiple demonstrations operated by an experienced surgeon in open surgery
while the right image explains the performing of the learned task in MIS.
For RA-MIS, r1 is the task’s initial point, and r1f is the task’s final point.
During the task operation, the tool must respect to the small incision on the
abdominal wall.

demonstrations in this paper. The repeated surgical operation
curves obtained from experienced surgeons will be adjusted.
Then, to model the curves obtained from the demonstrations
taught by experienced surgeons, the Gaussian Mixture Model
(GMM) is utilized to model the DMP during surgical operation
tasks.

1) A novel methodology of the 3-D manipulation skill
modeling after multiple demonstrations is presented to
the processes of surgical operation by integrating DTW
and GMM based DMP.

2) Performing the learned surgical operation skills in RA-
MIS by utilizing a decoupled controller and respect to
the RCM constraint during surgical operations simulta-
neously.

The developed techniques would enable the robot to learn
from senior surgeons’ skills, which features repetitive patterns
in open surgery, such as suturing or knot tying, by using the
TbD techniques and performing the learned surgical operations
in semi-autonomous surgery in the future. The proposed
approach reflects progress in comparison to the simple surgical
task tracking introduced in [23] and incorporates effective
TbD strategies [20] to a single controller in order to enable the
robot to reproduce the demonstrated operations. Finally, the
efficiency and accuracy of the proposed approach are validated
with the KUKA LWR4+ robot on a 3-D printed patient’s
phantom.

The remainder of this paper is organized as follows. Sec-
tion II contains the problem description addressed by this
paper. The corresponding control methodology and control
framework are presented in Section III. In Section IV, the
performance results are demonstrated by using the KUKA
LWR4+ robot on a patient phantom, and the conclusions of
this paper are drawn in Section V.

II. PROBLEM DESCRIPTION

Although Robot-assisted Minimally Invasive Surgery can
introduce many advantages when compared with conventional
methods, several critical issues need to be considered to en-
hance safety and improve accuracy during RAMIS. Generally,
during RA-MIS surgical operations, the basic problems that
should be fulfilled can be summarized as follows: movement
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constraint of the surgical tool, skills transferring method, and
control system development.

Firstly, the most critical problem during the operation
process of RA-MIS is safety. During surgical operations, the
surgical tool should pass through the small incision on the
abdominal wall of the patient’s body. Meanwhile, the surgical
tool should avoid making trauma to surrounding tissues and
organs, which is to ensure the safety of RAMIS. For the surgi-
cal robot, this can be considered as a kinematics constraint of
the surgical tool and can be achieved by the RCM constraint
of the surgical robot.

Besides, how to teach the surgical robot to learn the surgical
skills from an experienced surgeon is another important issue.
Unlike experienced surgeons, surgical robots are not intelligent
enough to make judgments and decisions autonomously during
the surgical operation process. To improve surgical margins
and decrease operating duration[29], surgical skills performed
by an experienced surgeon in open surgery could be learned
and used for semi-autonomous or autonomous operation in
RAMIS [8][30]. Hence, efficient and appropriate skill learning
methods need to be introduced to facilitate the learning of
surgical skills by surgical robots [31], [32].

Moreover, surgical robots perform surgical operation tasks
by controlling the surgical tip of the surgical robot to track the
desired trajectories and further complete a series of surgical
operations, such as cutting, flipping, etc. Therefore, precise
control algorithms [33] and a robust robot control system
[34] also should be developed to guarantee that the robot can
complete the surgical tasks accurately.

III. METHODOLOGY

The control method discussed in this paper is intended to
develop a new control approach that incorporates the TbD
techniques to learn the manipulation skills involved in a spe-
cific task from multiple demonstration operations performed
by an expert surgeon in open surgery. It can achieve the repre-
sentation [35] of the learned motion skill in semi-autonomous
MIS with a decoupled impedance controller respecting the
RCM constraint.

A. Modeling of the Serial Robot

The serial manipulator’s dynamic model used in this paper
can be described as [36]:

M(q)q̈ +C(q, q̇)q̇ + g(q)− τe = τC (1)

where n is the number of the degree of freedoms (DoFs).
C(q, q̇) ∈ Rn×n is the Coriolis force and Centrifugal matrix.
q ∈ Rn is the corresponding joints value, the matrix of the
corresponding inertia effects is defined as M(q) ∈ Rn×n,
and g(q) ∈ Rn is the vector of gravity. τe ∈ Rn and
τC ∈ Rn denote the corresponding external torque and the
corresponding control torques, respectively.

The formulation can be defined as follows in the task space
[37][38]:

MXẌ +HXẊ + J−T
T (q)g(q)− FeT = F (2)

Fig. 2. RCM constraint control: a null-space kinematic controller is utilized
to achieve the RCM constraint. As it is shown in the above picture, d is the
RCM constraint error, calculated by the distance between the trocar position
(r0) and the tool shaft. The tool-tip is controlled to reach the target from the
actual position (r1) in the patient’s abdomen cavity, and v2 is the desired
velocity to drive the wrist to the desire position (r2d) until it reaches (r2f ).

where the task space coordinates is X ∈ Rm and Ẋ ∈ Rm

represents the actual Cartesian velocity,

MX = J−T
T M(q)J−1

T (3)

HX = J−T
T [C(q, q̇) −M(q)J−1J̇T ]J−1

T (4)
FeT = J−T

T τe (5)

In this paper, the singularity case is ignored and conclude that
there is the pseudo-inverse of JT (q) ∈ Rm×n from the base
to the end-effector. The matrix MX ∈ Rm×m is the Cartesian
inertia. HX ∈ Rm×m is the effects of Cartesian Coriolis force
and m is the degrees of task space. FeT ∈ Rm is the external
force under the constraint condition

∃β ∈ R, ‖FeT ‖ ≤ β,∀t ≥ 0 (6)

B. Remote Center of Motion (RCM)

To make the end-effector position (r1 ∈ R3) to match
the target position (r1f ∈ R3), an interpolation technique
for moving to the desired position (r1d ∈ R3) is introduced
smoothly as [39], [40]:

r1d = −k1(r1 − r1f ) + ṙ1f (7)

where k1 > 0 is a positive coefficient. Based on the r1d, we
can obtain the desired wrist position r1f from the admittance
control model. According to the scenario with a serial robot in
Fig. 2, d is the distance from the RCM point (r0) to the tool
(the RCM constraint is enlarged for an easier understanding).
The tooltip is controlled to track the target r1d from the actual
position r1 in the patient’s abdominal cavity. The value v2 is
the velocity to move the wrist from its actual position r2 to
its desired position r2d, where the tool shaft passes through
the RCM point r0. Hence, the final desired wrist position r2f
can be obtained from:

r2f = r1d +
r0 − r1d
‖r0 − r1d‖

‖r2 − r1‖ (8)
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r2d = −k2(r2 − r2f ) + ṙ2f (9)

where k2 > 0 is a positive coefficient.

C. Decoupling Control Framework
Then a decoupling control method [38], shown in Fig. 3, is

introduced to achieve the desired tracking task on the surgical
tip and guaranteeing the RCM limitation with redundant
elements, separately. In this section, the proposed “Extended
Jacobian method” in [41] is presented in this section to expand
the operational space by formulating the end-effector and the
last joint. The decoupled control architecture shown in Fig. 3
consists of two main elements[38]:

• a Cartesian compliance control strategy to track the
reference trajectory r1f , accounting for the representation
of the learned surgical task demonstration;

• a null-space controller to drive the wrist position to r2f
respecting the RCM constraint;

Next, the formulation of decoupling control will be intro-
duced. The end velocity of the tooltip in the workspace and
the joint-space angular velocity have the following form:

ṙ = JT (q) q̇ (10)

where ṙ ∈ R3 is the actual end-effector Cartesian velocity.
To make the position of the end-effector (r1 ∈ R3) to follow
the desired trajectory (r1d ∈ R3), the torque τT , that is, the
Cartesian compliance control strategy could be designed as:

τT = JT (q)
T

[KX (r1 − r1d)−DX ṙ1d] (11)

where KX ∈ R3×3 and DX ∈ R3×3 represent the diagonal
stiffness and the diagonal damping matrices, respectively,
which are needed to be chosen.

In addition, to drive the wrist position r2 to respect the
RCM constraint, an additional control term, i.e., the null-
space controller, should be introduced to maintain this control
objective. By utilizing the redundant degrees of freedom of
the robot, the null-space controller could be defined as:

τN =

(
I − JT (q)

T
(
JT (q)

+
M

)T)
JT
NFN (12)

where JN ∈ R3×7 is the Jacobian matrix from the robot base
to the wrist, and JT (q)

+
M is the inertial-weighted pseudo-

inverse matrix:

JT (q)
+
M = M(q)

−1
JT (q)

T
(
JT (q)M(q)

−1
JT (q)

T
)−1

(13)
FN is the force applied on the null-space kinematics, which
could be designed as:

FN = −KN (r2 − r2d)−DN ṙ2d (14)

where KN ∈ R3×3 and DN ∈ R3×3 are designed null-space
stiffness and damping matrices.

The final control term of the decoupling control algorithm
can be expressed as follows:

τ = τT + τN (15)

D. Teaching by Demonstration (TbD)

An enhanced TbD control framework is introduced for
modeling the demonstrated tasks in open surgery by utilizing
the DTW and DMP. Recently, transferring experienced sur-
geons‘ skills to the surgical robot is attracting more and more
attention in the surgical robotics area [14], [42]. To cope with
such challenges, the need for developing methodology and
technology in human skill transferring will reinforce to the
robot-assisted surgical system.

Dynamic Time Warping (DTW) is a similarity measure-
ment tool by extending and shortening the data length [20],
[43], [44]. Except for extracting the similarity from multiple
demonstrations, motor primitives of the robot manipulation
should be modeled for representation. Dynamic Movement
Primitive (DMP) appears to be an effective and useful way
of representing the movement.

1) Preprocessing of demonstrated data using Dynamic Time
Warping: To derive the similarity from the multiple demon-
stration curves by an experienced surgeon in open surgery,
DTW has been introduced to match the different manipulation
templates with varying data lengths [45]. The DTW captures
flexible similarities under time distortions and features the
sum of the different indices among these similarities, called
Warp Path Distance, D(i, j), to calculate the correlation of the
two time series. For example, given the reference data series
R = {r1, r2, r3, · · · , ri, · · · , rL1} and the other demonstrated
data series T = {t1, t2, t3, . . . , tj , . . . , tL2}, where ri and tj
represent the values of each series, and L1 and L2 denote the
series lengths. A distance matrix can be utilized to realign R
and T .

D(i, j) = min

 D(i, j − 1)
D(i− 1, j)

D(i− 1, j − 1)

+ d (ti, rj) (16)

where i = 1, 2, · · · , L1, j = 1, 2, · · · , L2 and d (ti, rj) denote
the distance between ri and tj . D(L1, L2) is the distance
between R and T after the mapping. The best alignment
can be achieved when the smallest D(L1, L2) is obtained.
The DTW is able to couple the data with different length by
their similarity [46], regardless of the time sequences with a
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comparison of the general euclidean mapping. In this way,
in order to realign the R and T , DTW can be introduced
to obtain a warped matrix W = {w1, w2, · · · , wp, · · · , wP },
where wp =

(
rip , tjp

)
, 1 < p < P and P is the warped data

length. It means at the pth step, ri and tj are aligned and they
are saved in the warped matrix. After the processing of DTW,
the aligned demonstration curves can be obtained.

2) Modeling the operation curves using discrete Dynamic
Movement Primitive: Given the continuous stream of opera-
tion curves aligned with DTW, DMP [47][48] is an effective
approach to identify movement primitives among them in
biology motion studies. Generally, DMP consists of 2 main
components: 1) a converting system to constitute the states
based on dynamical structures, and 2) a canonical system
h(x) to generate trajectories by interpolating the factors. The
detailed formula can be described as:

ẋ = h(x)

ÿ = αy (βy(g − y)− ẏ) + f
(17)

where y is the converting system states, x is the canonical
system states, g is the end point, and

f(x, g) =

∑N
i=1 ψiwi

ΣN
i=1ψi

x (g − y0)

is a nonlinear function of the canonical system.
wi is a weighting for a given basis function

ψi = exp
(
−hi (x− ci)2

)
where ci and hi are the parameters of the Gaussian function.

E. Gaussian Mixture Model

In this paper, the GMM is applied to generate multiple
patterns at the same time, which can ensure the accuracy
of the action and model the uncertainty of multiple sets of
demonstrating data. In the generation stage, the Gaussian
Mixture Regression (GMR) and DMP are combined to model
the trajectory.

Human demonstrating data generally include multiple tra-
jectories for a single task, and these trajectories can not
be exactly the same [49]. In order to learn from multiple
demonstrations accurately, in our framework, GMM is needed
to encode the temporal and spatial components of continu-
ous trajectories. For learning tasks, suppose that the training
dataset includes N trajectories containing spatial or sensory
data ξs, and considering the temporal component ξt as an
additional dimension. The dataset ξ(j) =

{
ξ
(j)
s , ξ

(j)
t

}
, j =

1, . . . , N is modeled by a mixture of K components, defined
by probability density function:

p
(
ξ(j)
)

=
K∑

k=1

αkN
(
ξ(j) | µk,Σk

)
(18)

where N
(
ξ(j) | µk,Σk

)
is a Gaussian conditional probability

density function. GMM parameters, which can be learned by
expectation-maximization (EM) algorithm, are described by
{αk, µk,Σk}Kk=1, representing respectively prior, mean vectors
and covariance matrices. After completing the training of the

Human Demonstrations

DTW

GMM

DMP

RCM 

Constraint

Learned 

Operation

Decoupled 

Control 

Robot

Offline Trajectory Modeling

Task 

Execution

Fig. 4. Developed control framework. After multiple demonstrations, the
demonstrated motion curves are aligned with DTW, and GMM is introduced
to extract the similarity of the DMP for the manipulation task. A learned
manipulation curve is obtained from the trained model. Finally, the learned
operation is performed with the decoupled controller respecting the RCM
constraint.

trajectory probability model, the next step is to generate a
suitable trajectory based on the demonstrating information.
Given the detailed expression of the model, GMR is employed
to generate a synthesized trajectory with smaller position
errors in the workspace. Based on the theorem of Gaussian
conditioning, the formula of the desired trajectory can be
given:

p (ξs | ξt) =

K∑
k=1

βkN
(
ξs | ξs,k, Σ̂s,k

)
ξ̂s,k = µs,k + Σst,k(Σtt,k)

−1
(ξt − µt,k)

Σ̂ss,k = Σss,k − Σst,k(Σtt,k)
−1

Σts,k

(19)

where βk = p (k | ξt) is defined by the probability of the
component k to be responsible for ξt. Using the linear
combination properties of Gaussian distribution, an estima-
tion of the conditional expectation of ξs given ξt is thus

defined by p (ξs |ξt ) ∼ N
(
ξ̂s, Σ̂ss

)
where ξ̂s =

K∑
k=1

βk ξ̂s,k,

Σ̂ss =
K∑

k=1

β2
kΣ̂ss,k. Therefore, a generalized form of the

motions ξ̂ =
{
ξ̂s, ξt

}
and associated covariance matrices

Σ̂ss describing the constraints are computed by evaluating{
ξ̂s, Σ̂ss

}
at different time step ξt. Then, DMP is used to

model the desired trajectory ξ̂s for the purpose of generating
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Fig. 5. Demonstration setup scene in open surgery. A kidney tissue model
with a size of around 135 × 45 × 30mm3 is presented in the 3-D patient
phantom (170 × 210 × 100mm3). The patient phantom is opened, and a
metal clip fixes the kidney model in the abdominal cavity. A white task curve
is drawn in advance along a blood vessel on the surface of the kidney to serve
as the specific tracking task. The robot is activated in hands-on control mode
to enable the surgeon to relocate the surgical tip by hand. The “surgeon” is
commanded to do multiple demonstrations of tracking the white task curve
with the surgical tip.

generalized trajectories under different target positions.

F. Control Framework Development

The control framework integrates the procedures of teach-
ing by demonstration and decoupled control with the RCM
constraint, and it is depicted in Fig. 4, which contains the
following steps.

(1) Firstly, the human operator guides the robot to perform
the demonstration task a couple of times through kines-
thetic teaching, and the corresponding operation curves
are recorded [50];

(2) Since the performing time is varying, the technique of
DTW is adopted for aligning the curves with the same
data length. Through the alignment processing, not only
can the trajectories’ length in the input training data be
guaranted to be the same and aligned in time, but also
the data at the same time step can be modeled together;

(3) At the same time, the GMM is used to model multiple
trajectories, and GMR is used to generate one trajectory
from the multiple curves;

(4) Finally, a learning curve is derived from the trained
DMP, and it is performed using a robot under the RCM
constraint through a decoupled controller.

The performance of the proposed approach is tested in a lab
setup environment using a 7 DoFs serial robot. The ability to
learn from multiple demonstrations and to perform the learned
manipulation skill in semi-autonomous MIS in demonstrated
and discussed in the following section.

Fig. 6. Demonstration task tracking procedure. The numbers (1-9) indicate
the tracking procedure by hands-on demonstration in open surgery. The 1st
picture shows the starting point of the tracking tasks, and the 9th picture
represents the corresponding final point. The “surgeon” use hands to hold on
the tool shaft and move the tool tip following the white task curve on the
kidney.
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Fig. 7. Demonstrated operation curves in 3-D. The hands-on demonstrations
are repeated 7 times in open surgery.

IV. EXPERIMENTAL DEMONSTRATION AND RESULTS

An overview of the developed experimental surgical system
is shown in Fig. 5. A redundant robot (LWR4+, KUKA,
Germany) serves as the serial robot torque-controller through
Fast Research Interface (FRI), which provides direct low-
level real-time access to the robot controller (KRC) at rates
of 500 Hz. An human operator (namely the surgeon) would
manually operate the robot the generate the demonstrating
data. The RCM constraint is provided by a 3-D printed surgery
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Fig. 8. Demonstrated operation curves in 3-axis. The demonstrated data lengths are different due to the difference of the operation time.
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Fig. 9. Warped operation curves in 3-axis. The curves are warped with DTW to align the data.
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human phantom. The size of the phantom is similar to the real
human abdomen and the distribution of the incisions is same
as the real surgery. Each small incision is equipped with a
silicone material to simulate the physical interaction. In this
section, in order to evaluate the performance of the proposed
method, some experiments are carried out. The experimental
procedures mainly include as follows:

1) Firstly, the desired trajectory is generated through op-
erating the robot arm multiple times in surgery envi-
ronment by human operators, the GMM-based DMP
presented in Section III is used to generate a learned
trajectory.

2) Then, the KUKA robot is performed to move along the
learned trajectory to accomplish the surgical operation
with RCM constraint in the autonomous MIS.

A. Teaching by Demonstration in open surgery

In order to evaluate the proposed approach, an experiment
using the KUKA robot is performed to demonstrate its feasibil-
ity. The scenario of hands-on demonstration in open surgery is
shown in Fig. 5. A 3-D printed patient phantom and a kidney
organ in the abdomen cavity are used for demonstration. A
white curve is drawn on the kidney to serve as a demonstration
task.

First of all, the patient phantom is opened, and a subject
is asked to move the robot by hands-on control to track
the demonstration task, as shown in Fig. 6. The surgeon
manipulates the robotic arm to track the desired trajectory
with the sequence steps. Particularly, the demonstration task
is repeated 7 times. The corresponding 3-D demonstration
curves of the tracking task are shown in Fig. 7. As shown
in Fig. 8, since it is impossible to ask a surgeon to perform
a task precisely multiple times, these trajectories are quiet
different from each other, especially the data length. In other
words, in the process of modeling multiple trajectories by
GMM, there remains a problem concerning the robustness of
the model to the temporal variability across the demonstrated
movements. Thus, it could be useful to align the different
demonstrations automatically before further processing. As it
is shown in Fig. 8, the data length of the curves are different.
To model the manipulation skills, it is essential to align the
operation curves and then extract the similarity of the curves
by using DMP. Hence the DTW is employed to warp the
curves according to the time sequences from 1 to 9. After
the pre-processing, the operation curves are aligned according
to each axis, as shown in Fig. 9. Through the alignment
processing, not only can the trajectories’ length in the input
training data be guaranteed to be the same and aligned in
time, but also the data at the same time step can be modeled
together. Then GMM is introduced to model the DMP of the
operation curve, and a learned 3-D is derived from the trained
DMP. Finally, the learned manipulation motion is derived
from multiple demonstrations. Fig. 10 shows the learned 3-D
task by teaching by demonstration. Thus, using the proposed
algorithm, the approach could learn the surgical operation
skills of DMP with multiple demonstrations of a specific task.
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Fig. 10. Learned operation curves in 3-D

Fig. 12. Performance measurement. d is the RCM constraint error and EX

is the Cartesian error on the tool tip. The “Actual” link means the actual tool
shaft placement while the “Desired” link represents its corresponding desired
placement.

B. Performing learned trajectory in semi-autonomous MIS

After teaching by demonstration, the learned trajectory is
performed in semi-autonomous surgery, which includes two
procedures shown in Fig. 11. The left picture of Fig. 11
shows the first procedure to use hands-on control to locate the
position of the RCM constraint. Then, surgical tool inserted
to inside the abdominal cavity to reach the initial point of
the task. The right image shows the second step to perform
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Fig. 13. Online performance for performing the learned trajectory

the learned manipulation under surgeon’s supervision from the
visual interface.

It should be noticed that the hands-on control is activated
in the first procedure and the decoupled controller is used to
perform the learned trajectory respecting the RCM constraint
during the second procedure. As it is shown in Fig. 11, to
locate the RCM constraint, the subject uses hands-on control.
Then the subject inserts the surgical instrument into the patient
abdomen phantom via the small incisions, and the robot
autonomously tracks the desired trajectory to perform the
surgical task by respecting the RCM constraint. During the
autonomous tracking, the surgeon supervises the procedure
from the visual interface and holds the emergency button for
safety issue.

The decoupled impedance parameters of the controller can
be found in our previous works [39]. The performance is mea-
sured according to Fig. 12 throughout the implementation of
the learned path. It depicts the error of Cartesian position, Er,
and the error of the RCM boundary, d, which are calculated
as follows:

‖Er‖ = ‖r1d − r1‖
d = ‖(r0 − r1)× û‖ (20)

where û is the direction vector of the tool shaft.
Fig. 13 shows the online performance while executing the

learned task with an RCM constraint. It shows that the robot
can perform the learned trajectories with taking account the
RCM constraint. The RCM constraint error and the Cartesian
position error is constrained in a small area within 2mm and
6mm, respectively.

V. CONCLUSION

This paper proposes an approach to introduce Teaching
by Demonstration (TbD) techniques for Robot-Assisted Min-
imally Invasive Surgery (RA-MIS), where an RCM kinematic
constraint is presented. It aims at using the benefits of ease
manipulation in open surgery and smaller incision in MIS.
More specifically, the approach consists of i) DTW to mea-
sure the similarity among the multiple demonstrations, ii)

GMM based DMP to model the motion primitives of human
demonstrations, and iii) a hierarchical control framework to
perform the learned surgical task respecting RCM constraint.
The methods of DTW and DMP are utilized to analyze and
generalize the learned operations curves demonstrated by the
surgeon in open surgery. Then the learned motion is repre-
sented in semi-autonomous MIS using a decoupled control
methodology. The experimental demonstration is performed
on 3-D printed patient phantom by using KUKA LWR4+ to
validate the quality of the proposed method. The findings show
that the introduced control algorithm not only is able to learn
the human operation skill from multiple demonstrations on a
specific task but also can transfer the learned motion from
open surgery to MIS by guaranteeing the RCM constraint.

These preliminary results demonstrate that skill transfer
from open surgery to MIS is feasible. The learning ability and
RCM constraints are guaranteed. Future works will exploit the
developed control approach to enable the robot to learn more
complex senior surgeons’ skills, such as actual suturing or
knot tying with organ models. Additionally, camera movement,
while a surgical task can also be achieved following this
approach. By the way, skill transferring in this paper only takes
into account the motion skills regardless of the stiffness during
the operation. Hence, the interaction force of the demonstrated
task will be integrated, and the autonomous camera will be
considered to achieve accurate tracking in future works.
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