Catheter interventions are often used in endovascular procedures to obviate complicated open surgical interventions. One of the major challenges relates to moving the catheter toward the required location with safety and accuracy. Due to the unpredictable tissue deformation associated with device insertion and the uncertainties of intra-operative sensing, a fast and robust path planning algorithm would be advantageous. Most of current methods are pre-operative planning, ignoring time costs. This paper aims at proposing a faster and robust path planning algorithm based on heuristics information. In this paper, a novel Heuristic-Sliding-Window-based Rapidly-exploring Random Trees (HSW-RRT) path planning algorithm is proposed for endovascular catheterization. This method keeps the catheter away from vascular edges in light of safety concerns by sampling along the centerline. Simulation results show the feasibility of this path planning method in 2D scenarios. Path solutions can be generated with similar performance and less time effort than RRT*.

A Heuristic-Sliding-Window-based RRT Path Planning for Endovascular Catheterization

Zhen Li;Alice Segato;Alberto Favaro;Elena De Momi
2020-01-01

Abstract

Catheter interventions are often used in endovascular procedures to obviate complicated open surgical interventions. One of the major challenges relates to moving the catheter toward the required location with safety and accuracy. Due to the unpredictable tissue deformation associated with device insertion and the uncertainties of intra-operative sensing, a fast and robust path planning algorithm would be advantageous. Most of current methods are pre-operative planning, ignoring time costs. This paper aims at proposing a faster and robust path planning algorithm based on heuristics information. In this paper, a novel Heuristic-Sliding-Window-based Rapidly-exploring Random Trees (HSW-RRT) path planning algorithm is proposed for endovascular catheterization. This method keeps the catheter away from vascular edges in light of safety concerns by sampling along the centerline. Simulation results show the feasibility of this path planning method in 2D scenarios. Path solutions can be generated with similar performance and less time effort than RRT*.
2020
Path Planning, Flexible Catheter, Autonomous Endovascular Intervention
File in questo prodotto:
File Dimensione Formato  
GNB_abstract_revised.pdf

accesso aperto

Dimensione 3.04 MB
Formato Adobe PDF
3.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1148211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact