Resistive-switching random access memory (RRAM) devices based on filamentary switching are attracting widespread interest for their unique properties, such as high ON-OFF ratio, ultrasteep slope, good endurance, and low-current operation. Recently, volatile RRAMs based on Ag drift and diffusion were also demonstrated for possible applications such as crosspoint array selectors and neuromorphic computing. However, the mechanism of the volatile switching, namely, the spontaneous dissolution of the Ag filament, is still not clear. A deep understanding of the metallic filament formation and spontaneous disruption would strongly help the engineering of the device for optimized performances. Here, we present a numerical physics-based drift/diffusion modeling framework to describe the threshold switching, I-V characteristics, and morphological evolution of the metallic filament. The model can support TCAD-type device simulations for scaling, reliability, and variability studies.

Volatile Resistive Switching Memory Based on Ag Ion Drift/Diffusion Part I: Numerical Modeling

Wang W.;Laudato M.;Ambrosi E.;Bricalli A.;Covi E.;Ielmini D.
2019

Abstract

Resistive-switching random access memory (RRAM) devices based on filamentary switching are attracting widespread interest for their unique properties, such as high ON-OFF ratio, ultrasteep slope, good endurance, and low-current operation. Recently, volatile RRAMs based on Ag drift and diffusion were also demonstrated for possible applications such as crosspoint array selectors and neuromorphic computing. However, the mechanism of the volatile switching, namely, the spontaneous dissolution of the Ag filament, is still not clear. A deep understanding of the metallic filament formation and spontaneous disruption would strongly help the engineering of the device for optimized performances. Here, we present a numerical physics-based drift/diffusion modeling framework to describe the threshold switching, I-V characteristics, and morphological evolution of the metallic filament. The model can support TCAD-type device simulations for scaling, reliability, and variability studies.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1111822
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact