This paper proposes a manipulability optimization control of a 7-DoF robot manipulator for Robot-Assisted Minimally Invasive Surgery (RAMIS), which at the same time guarantees a Remote Center of Motion (RCM). The first degree of redundancy of the manipulator is used to achieve an RCM constraint, the second one is adopted for manipulability optimization. A hierarchical operational space formulation is introduced to integrate all the control components, including a Cartesian compliance control involving the main surgical task, a first null-space controller for the RCM constraint, and a second null-space controller for manipulability optimization. Experiments with virtual surgical tasks, in an augmented reality environment, were performed to validate the proposed control strategy using the KUKA LWR4+. The results demonstrate that end-effector accuracy and RCM constraint can be guaranteed, along with improving the manipulability of the surgical tip.

Manipulability Optimization Control of a Serial Redundant Robot for Robot-assisted Minimally Invasive Surgery

Hang Su;Jagadesh Manivannan;Luca Bascetta;Giancarlo Ferrigno;Elena De Momi
2019-01-01

Abstract

This paper proposes a manipulability optimization control of a 7-DoF robot manipulator for Robot-Assisted Minimally Invasive Surgery (RAMIS), which at the same time guarantees a Remote Center of Motion (RCM). The first degree of redundancy of the manipulator is used to achieve an RCM constraint, the second one is adopted for manipulability optimization. A hierarchical operational space formulation is introduced to integrate all the control components, including a Cartesian compliance control involving the main surgical task, a first null-space controller for the RCM constraint, and a second null-space controller for manipulability optimization. Experiments with virtual surgical tasks, in an augmented reality environment, were performed to validate the proposed control strategy using the KUKA LWR4+. The results demonstrate that end-effector accuracy and RCM constraint can be guaranteed, along with improving the manipulability of the surgical tip.
2019
IEEE International Conference on Robotics and Automation (ICRA)
9781538681763
9781538660270
File in questo prodotto:
File Dimensione Formato  
ICRAMOC2019.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 1.52 MB
Formato Adobe PDF
1.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1087910
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 30
social impact