Surgeons can benefit from the cooperation with a robotic assistant during the repetitive execution of precise targeting tasks on soft tissues, such as during brain cortex stimulation procedures in open-skull neurosurgery. Position-based force-to-motion control schemes may not be suitable solution to provide the manipulator with the high compliance desirable during guidance along wide trajectories. A new torque controller with non-linear force feedback (FFE) is presented to provide augmented haptic perception to the operator, during the instrument’s placement on the tissue. The FFE controller was experimentally validated with a pool of non-expert users using brain-mimicking gelatin phantoms (8%-16% concentration). Besides providing hand tremor rejection for a stable holding of the tool, the FFE controller was proved to allow for a safer tissue contact with respect to both robotic assistance without force feedback and freehand executions (50% and 75% reduction of the indentation depth, respectively). Future work will address the evaluation of the safety features of the FFE controller with expert surgeons on a realistic brain phantom, also accounting for unpredictable tissue motions as during seizures due to cortex stimulation.
Force Feedback Enhancement for Soft Tissue Interaction Tasks in Cooperative Robotic Surgery
BERETTA, ELISA;NESSI, FEDERICO;FERRIGNO, GIANCARLO;DE MOMI, ELENA
2015-01-01
Abstract
Surgeons can benefit from the cooperation with a robotic assistant during the repetitive execution of precise targeting tasks on soft tissues, such as during brain cortex stimulation procedures in open-skull neurosurgery. Position-based force-to-motion control schemes may not be suitable solution to provide the manipulator with the high compliance desirable during guidance along wide trajectories. A new torque controller with non-linear force feedback (FFE) is presented to provide augmented haptic perception to the operator, during the instrument’s placement on the tissue. The FFE controller was experimentally validated with a pool of non-expert users using brain-mimicking gelatin phantoms (8%-16% concentration). Besides providing hand tremor rejection for a stable holding of the tool, the FFE controller was proved to allow for a safer tissue contact with respect to both robotic assistance without force feedback and freehand executions (50% and 75% reduction of the indentation depth, respectively). Future work will address the evaluation of the safety features of the FFE controller with expert surgeons on a realistic brain phantom, also accounting for unpredictable tissue motions as during seizures due to cortex stimulation.File | Dimensione | Formato | |
---|---|---|---|
Beretta_IROS15_manuscript_revision_letter.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
669.63 kB
Formato
Adobe PDF
|
669.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.