Minimally invasive mitral valve repair offers significant advantages over traditional open-heart surgery, yet it remains a complex procedure that exposes both patients and medical staff to radiation. To address these challenges, a significant research interest is growing in automating these manual procedures. Continuum robots represent a promising approach, thanks to their ability to navigate confined spaces. However, their nonlinear behavior presents challenges in modeling and control. In this study, we developed a robust position control method for a variable-length tendon-driven continuum robot. We designed a control system that effectively tracks the desired target positions by employing a constant curvature model and a Jacobian-based control algorithm with real-time position feedback. We assessed the stability of our system through Lyapunov analysis, demonstrating reliable convergence to these target positions. Experimental validation conducted in a cardiovascular phantom demonstrated significant improvements with respect to the state of the art. Our method achieved a trajectory following error of approximately 2.43 mm [1.63, 3.23] and a target position error of about 1.92 mm [1.73, 3.13]. Moreover, the computation time per trajectory point was reduced to approximately 0.04 seconds, highlighting enhanced computational efficiency. These results showcase improved accuracy and efficiency in minimally invasive mitral valve repair procedures.

Model-Based Position Control of a Tendon-driven Variable-Length Continuum Robot for Minimally Invasive Mitral Valve Repair

Anna Bicchi;Xiu Zhang;Benjamin Jara;Vanessa Cannizzaro;Angela Peloso;Elena De Momi
2025-01-01

Abstract

Minimally invasive mitral valve repair offers significant advantages over traditional open-heart surgery, yet it remains a complex procedure that exposes both patients and medical staff to radiation. To address these challenges, a significant research interest is growing in automating these manual procedures. Continuum robots represent a promising approach, thanks to their ability to navigate confined spaces. However, their nonlinear behavior presents challenges in modeling and control. In this study, we developed a robust position control method for a variable-length tendon-driven continuum robot. We designed a control system that effectively tracks the desired target positions by employing a constant curvature model and a Jacobian-based control algorithm with real-time position feedback. We assessed the stability of our system through Lyapunov analysis, demonstrating reliable convergence to these target positions. Experimental validation conducted in a cardiovascular phantom demonstrated significant improvements with respect to the state of the art. Our method achieved a trajectory following error of approximately 2.43 mm [1.63, 3.23] and a target position error of about 1.92 mm [1.73, 3.13]. Moreover, the computation time per trajectory point was reduced to approximately 0.04 seconds, highlighting enhanced computational efficiency. These results showcase improved accuracy and efficiency in minimally invasive mitral valve repair procedures.
File in questo prodotto:
File Dimensione Formato  
TMRB3550674.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 7.46 MB
Formato Adobe PDF
7.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1285329
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact