Exhausting manual labor is still predominant in the industrial context. It typically consists in manipulating heavy parts or working in non-ergonomic conditions. The resulting work-related musculoskeletal disorders are a major problem to tackle. The most-affected body section is the the lumbar spine. Recently, exoskeletons have been identified as a possible non-invasive solution to reduce the impact of low-back pain. State-of-the-art prototypes have been optimized to: follow unconstrained human kinematics, (partially) relieve the load on assisted joints, and allow anthropometric adaptation. Yet, this technology still has limited adoption. Manufacturing optimization may address the following limitations: bulky/heavy resulting designs, complex assembly and maintenance, high manufacturing costs, long procedures for adaptation and wearing, and psychological effects (e.g., cognitive load and usability). In this contribution, the aforementioned issues are tackled improving a previous low-back exoskeleton prototype. In particular, kinematic analysis, Finite-Element-Method, and topological optimization have been combined to obtain a lightweight prototype, testing different materials (Nylon, carbon-fiber reinforced PC/ABS, etc.). We applied both Design for Assembly and Design for Manufacturability. The resulting exoskeleton prototype is described in the paper, ready for end-user field tests.

User-Centered Back-Support Exoskeleton: Design and Prototyping

Roveda L.;Pesenti M.;Covarrubias Mario;Pedrocchi A.;Braghin F.;Gandolla M.
2022-01-01

Abstract

Exhausting manual labor is still predominant in the industrial context. It typically consists in manipulating heavy parts or working in non-ergonomic conditions. The resulting work-related musculoskeletal disorders are a major problem to tackle. The most-affected body section is the the lumbar spine. Recently, exoskeletons have been identified as a possible non-invasive solution to reduce the impact of low-back pain. State-of-the-art prototypes have been optimized to: follow unconstrained human kinematics, (partially) relieve the load on assisted joints, and allow anthropometric adaptation. Yet, this technology still has limited adoption. Manufacturing optimization may address the following limitations: bulky/heavy resulting designs, complex assembly and maintenance, high manufacturing costs, long procedures for adaptation and wearing, and psychological effects (e.g., cognitive load and usability). In this contribution, the aforementioned issues are tackled improving a previous low-back exoskeleton prototype. In particular, kinematic analysis, Finite-Element-Method, and topological optimization have been combined to obtain a lightweight prototype, testing different materials (Nylon, carbon-fiber reinforced PC/ABS, etc.). We applied both Design for Assembly and Design for Manufacturability. The resulting exoskeleton prototype is described in the paper, ready for end-user field tests.
2022
Procedia CIRP Conference on Manufacturing Systems, CIRP CMS 2022
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2212827122003031-main.pdf

accesso aperto

: Publisher’s version
Dimensione 1.78 MB
Formato Adobe PDF
1.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1232797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact