Semiconductor design companies are integrating proprietary intellectual property (IP) blocks to build custom integrated circuits (ICs) and fabricate them in a third-party foundry. Unauthorized IC copies cost these companies billions of dollars annually. While several methods have been proposed for hardware IP obfuscation, they operate on the gate-level netlist, i.e., after the synthesis tools embed most of the semantic information into the netlist. We propose ASSURE to protect hardware IP modules operating on the register-transfer level (RTL) description. The RTL approach has three advantages: 1) it allows designers to obfuscate IP cores generated with many different methods (e.g., hardware generators, high-level synthesis tools, and preexisting IPs); 2) it obfuscates the semantics of an IC before logic synthesis; and 3) it does not require modifications to EDA flows. We perform a cost and security assessment of ASSURE against state-of-the-art oracle-less attacks.
ASSURE: RTL Locking Against an Untrusted Foundry
Pilato, Christian;Sciuto, Donatella;
2021-01-01
Abstract
Semiconductor design companies are integrating proprietary intellectual property (IP) blocks to build custom integrated circuits (ICs) and fabricate them in a third-party foundry. Unauthorized IC copies cost these companies billions of dollars annually. While several methods have been proposed for hardware IP obfuscation, they operate on the gate-level netlist, i.e., after the synthesis tools embed most of the semantic information into the netlist. We propose ASSURE to protect hardware IP modules operating on the register-transfer level (RTL) description. The RTL approach has three advantages: 1) it allows designers to obfuscate IP cores generated with many different methods (e.g., hardware generators, high-level synthesis tools, and preexisting IPs); 2) it obfuscates the semantics of an IC before logic synthesis; and 3) it does not require modifications to EDA flows. We perform a cost and security assessment of ASSURE against state-of-the-art oracle-less attacks.File | Dimensione | Formato | |
---|---|---|---|
final_version.pdf
Accesso riservato
:
Publisher’s version
Dimensione
5.81 MB
Formato
Adobe PDF
|
5.81 MB | Adobe PDF | Visualizza/Apri |
11311-1172512_Pilato.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
5.94 MB
Formato
Adobe PDF
|
5.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.