
ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 1

ASSURE: RTL Locking Against an
Untrusted Foundry

Christian Pilato, Senior Member, IEEE, Animesh Basak Chowdhury, Student Member, IEEE,
Donatella Sciuto, Fellow, IEEE, Siddharth Garg, Member, IEEE, Ramesh Karri, Fellow, IEEE

Abstract—Semiconductor design companies are integrating
proprietary intellectual property (IP) blocks to build custom
integrated circuits (IC) and fabricate them in a third-party
foundry. Unauthorized IC copies cost these companies billions
of dollars annually. While several methods have been proposed
for hardware IP obfuscation, they operate on the gate-level
netlist, i.e., after the synthesis tools embed most of the semantic
information into the netlist. We propose ASSURE to protect
hardware IP modules operating on the register-transfer level
(RTL) description. The RTL approach has three advantages: (i)
it allows designers to obfuscate IP cores generated with many
different methods (e.g., hardware generators, high-level synthesis
tools, and pre-existing IPs); (ii) it obfuscates the semantics of an
IC before logic synthesis; (iii) it does not require modifications
to EDA flows. We perform a cost and security assessment of
ASSURE against state-of-the-art oracle-less attacks.

I. INTRODUCTION

The cost of IC manufacturing has increased 5ˆ when
scaling from 90nm to 7nm [1]. An increasing number of design
houses are now fab-less and outsource the fabrication to a
third-party foundry [2], [3]. This reduces the cost of operating
expensive foundries but raises security issues. If a rogue in
the third-party foundry has access to the design files, they can
reverse engineer the IC functionality to steal the Intellectual
Property (IP), causing economic harm to the design house [4].

Fig. 1 is a fabless IC design flow with third-party man-
ufacturing. The flow accepts the specification in a hardware
description language (HDL). Designers create the components
either manually or generate them automatically, and integrate
them into a hardware description at the register-transfer level
(RTL). Given a technology library (i.e., a description of
gates in the target technology) and a set of constraints, logic
synthesis elaborates the RTL into a gate-level netlist. Logic
synthesis applies optimizations to reduce area and improve
timing. While RTL descriptions are hard to match against high-
level specifications [5], they are used as a golden reference
during synthesis to verify each step does not introduce any
error. Physical design generates the layout files that are sent
to the foundry for fabrication of ICs that are then returned
to the design house for packaging and testing. Assuming a

Manuscript received October 11, 2020; revised January 28, 2021 and March
21, 2021; accepted April 6, 2021.

C. Pilato and D. Sciuto are with the Dipartimento di Elettronica, In-
formazione e Bioingegneria, Politecnico di Milano, Milano, Italy (chris-
tian.pilato@polimi.it, donatella.sciuto@polimi.it).

A. B. Chowdhury, S. Garg and R. Karri are with the NYU Center for
Cybersecurity (http://cyber.nyu.edu), New York University, New York, NY,
USA (abc586@nyu.edu, garg@nyu.edu, rkarri@nyu.edu).

Fa
br

ic
at

io
n

Design House FoundryHigh-Level
Synthesis

Hardware
Generators

Manual
Design

Ph
ys

ic
al

 D
es

ig
n

Gate-level
Netlist

IC Layout
Files

High-level
Spec.

Params ASSURE

Sy
st

em
 D

es
ig

n

RTL
Spec.

High-Level
Descriptions

Hardware
Descriptions Formal Verification

Tech. Library

L
og

ic
 S

yn
th

es
is

Pre-existing
IP Chip

Fig. 1: State-of-the-art IC design flow. Designers create RTL
description of an IC either by manual design, or by using HLS
tools, or by using hardware generators. The netlist after more
processing steps is sent to a third-party foundry. ASSURE
locks an RTL description before logic synthesis.

trusted design house, the foundry is the first place where a
malicious attacker can reverse engineer and replicate an IC.

Semiconductor companies are developing methods for IP
obfuscation. In split manufacturing, the design house splits
the IC into parts that are fabricated by different foundries [6].
An attacker must access all parts to recover the IC. While
the design process becomes more complex, the designers
cannot guarantee complete security. Watermarking hides a
signature inside the circuit, which is later verified during
litigation [7]. Finally, designers apply logic locking [8] to
prevent unauthorized copying and thwart reverse-engineering.
They introduce extra gates controlled by a key that is kept
secret from the foundry. They activate the IC functionality by
installing the key into a tamper-proof memory after fabrication.

A. Related Work

Logic locking is a popular technique to protect the intellec-
tual property of ICs [9]. Designers can apply logic locking at
different abstraction levels and configure the protection based
on the information available to the attacker [8].

Many existing methods operate on the gate-level netlists [9].
Gate-level locking can not obfuscate all the semantic informa-
tion because logic synthesis and optimizations absorb much
of it into the netlist before the locking step. For example,
constant propagation absorbs and propagate the constants. Our
method completely strips the constants from the circuit before
synthesis. Recently, alternative high-level locking methods
obfuscate the semantic information before logic optimizations
embed them into the netlist [10], [11]. For example, TAO
applies obfuscations during HLS [10] but requires access to
the HLS source code to integrate the obfuscations and cannot
obfuscate existing IPs. Protecting a design at the register-

ar
X

iv
:2

01
0.

05
34

4v
3

 [
cs

.C
R

]
 1

8
A

pr
 2

02
1

http://cyber.nyu.edu

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 2

transfer level (RTL) is an interesting compromise [12], [13].
Most of the semantic information (e.g., constants, operations
and control flows) is still present in the RTL and obfuscations
can be applied to existing RTL IPs. In [12], the authors propose
structural and functional obfuscation for DSP circuits. We
propose a more general method that can be applied to any
type of circuit. In [13], the authors propose a method to
insert a special finite state machine to control the transition
between obfuscated mode (incorrect function) and normal
mode (correct function). Such transition can only happen
with a specific input sequence. We use a similar method to
obfuscate the operations without additional logic (and power-
up overhead) to make the circuit functional in normal mode. To
obfuscate the semantic information, ASSURE leverages prior
work on software program obfuscation [14], [15], [16]. These
methods obfuscate data structures, control flows, and constants
through code transformations or by loading information from
memory at runtime. We use a similar approach to create
opaque predicates dependent only on the locking key [13].

When the attackers have access only to the circuit netlist
(like in the early stages of the fabrication process), they
need to identify the correct variant among the ones created
by the locking key. Redundancy attacks can recover part of
the key bits for several locking methods [17], while machine
learning can predict the key bit values based on the structure
of the circuit [18]. However, such attacks cannot recover what
is not present in the circuit, like extracted constants, and
cannot distinguish semantically equivalent variants. When the
attackers can access also an activated IC (i.e. the oracle) [19],
[20], they can use Boolean Satisfiability (SAT)-based attacks
to recover the key. Several solutions have been proposed to
thwart SAT-based attacks [21], [22]. For example, stripped-
functionality logic locking (SFLL) extracts part of the func-
tionality, which is hidden and restored upon the application of
the correct key [22]. SFLL-HLS is the corresponding HLS-
level extension [23]. However, complete protection is not
guaranteed as attacks on SFLL have been reported when
the “protected” functional inputs are at a certain Hamming
distance from the key [24], [25]. Also, many SAT-resilient
protections, like SARLock and SFLL, can be broken even with
oracle-less attacks [17]. So, the approaches for the different
threat models are complementary and must be combined to
obtain multi-level protection.

In this work, we aim at avoiding the attackers can recover
the circuit with modern oracle-less attacks. We base our
techniques on the concept of indistinguishability: all Boolean
functions generated by a locking key have the same probability
of being the correct circuit. So, netlist-only attacks are not able
to identify and rule out “incorrect” designs.

B. Paper Contributions
ASSURE RTL obfuscation uses three techniques to obfus-

cate constants, arithmetic operations, and control branches.
ASSURE provides the following contributions with respect to
the state-of-the-art approaches:
‚ the three ASSURE techniques are complete and provably

secure for creating indistinguishable RTL designs with no
limitations on the input descriptions to be protected;

‚ ASSURE can provide multi-level security together with
oracle-based protections (e.g., scan-chain isolation [26]);

‚ ASSURE is a technology-independent tool that is fully
compatible with existing EDA design flows and leaves
complete control to the designer on the obfuscation process.

We describe our RTL-to-RTL translation framework in Sec-
tion III, along with security proofs of obfuscations for con-
stants, operations, and branches (Section III-B). We also
assess security against state-of-the-art oracle-less attacks (Sec-
tion IV-B) and evaluate the related overhead (Section IV-D).

II. THREAT MODEL: UNTRUSTED FOUNDRY

The state-of-art in logic locking considers two broad cat-
egories of threat models: netlist-only and oracle-guided [8],
[27]. In both settings, the attacker has access to a locked
netlist, but in the latter, also to an unlocked IC (oracle)
to analyze input/output relationships. The netlist-only model
applies for an untrusted foundry that accesses the IC design
for the first time. It also captures low-volume settings – e.g.,
the design of future defense systems with unique hardware
requirements [28] – where the attacker would not reasonably
be able to access a working copy of the IC. Consider, for
instance, a fab-less defense contractor that outsources the
fabrication of an IC to an untrusted foundry. The untrusted
foundry has access to the layout files of the design and can
reverse engineer a netlist and even extract the corresponding
RTL [29]. However, since the foundry produces the first ever
batch of an IC design (in some cases the only one), an activated
chip is not available through any other means. Attacks that
rely on knowledge of an IC’s true I/O behaviour (e.g., SAT
attacks) cannot be applied and are therefore out-of-scope.
However, the attacker can still rely on a range of netlist-
only attacks, desynthesis [30], redundancy identification [17]
and ML-guided structural and functional analysis [31], [32],
for instance, to recover the key bits and reverse engineer
the locked netlist. In the following, we prove the resilience
of ASSURE obfuscation to not only these three attacks, but
also that ASSURE locked netlists reveal no information about
the design other than any prior knowledge that the designer
might have about the design. In the oracle-guided model, the
attackers need to get an unlocked IC from the market – e.g.,
because of high-volume commercial fabrication – to analyze
I/O relationships and apply the corresponding attacks. With
our method, we thwart attacks that are successful for oracle-
guided protections even without activated IC.

III. OVERVIEW OF ASSURE

Fig. 2 shows the ASSURE flow. Given an RTL design D
and a set of obfuscation parameters, ASSURE generates a
design D˚ together with a single locking key K˚r such
that D˚ matches the functionality of D only when K˚r is
applied. ASSURE is a technology-independent and operates
on the RTL after system integration but before logic synthesis.
ASSURE obfuscates existing IPs and those generated with
commercial HLS tools. Even if logic locking is a hardware
approach, obfuscating RTL code has analogies with program
obfuscation to protect the software IP [14], [16]. In both cases,

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 3

ASSURE

…01010100101010111 …01001111001

Obfuscation points,
Reset/update processes,
Signal bitwidths

HDL
Parser AST AST

analysis

AST
elaboration

(constant, operations, and
branch protection)

AST RTL
generation

Locked RTL
Design (D*)

Locking
Key K

Input
Key

Maximum number of key bits,
Modules to obfuscate

1 2

3

4

Input RTL
Design (D)

Locking
parameters

Fig. 2: Organization of ASSURE.

the designer aims at obfuscating the semantic information con-
tained into the design rather than its structure [13]. ASSURE
obfuscates the RTL by adding in opaque predicates such that
the evaluation of the opaque predicates depends on the locking
key; their values are known to the designer during obfuscation,
but unknown to the untrusted foundry. ASSURE obfuscates
three semantic elements useful to replicate function of an IP:
‚ constants contain sensitive information in the computation

(e.g., filter coefficients).
‚ operations determine functionality.
‚ branches define the execution flow (i.e., which operations

are executed under specific conditions).
ASSURE parses the input HDL and creates the abstract syntax
tree (AST) – step 1 . It then analyzes the AST to select the
semantic elements to lock (step 2) and obfuscates them (AST
elaboration – step 3). The RTL generation phase (step 4)
produces the output RTL design that has the same external
interface as the original module, except for an additional
input port that is connected to the place where K˚r is stored.
ASSURE starts from a synthesizable IP and modifies its de-
scription, it fits with existing EDA flows and same constraints
as the original, including tools to verify that resulting RTL is
equivalent to the original design when the correct key is used
and to verify that it is not equivalent to the original when an
incorrect key is used.

The key idea of ASSURE is that the functionality of D˚ is
much harder to understand without the parameter K˚r . If the
attackers apply a key different from K˚r to D˚, they obtain
plausible but wrong circuits, indistinguishable from the correct
one. These variants are indistinguishable from one another
without a-priori knowledge of the design.

A. ASSURE Obfuscation Flow

To generate an obfuscated RTL design, we must match
the requirements of the IP design with the constraints of
the technology for storing the key (e.g., maximum size of
the tamper-proof memory). On one hand, the number of bits
needed to obfuscate the semantics of an RTL design depends
on the complexity of the algorithm to protect. On the other
hand, the maximum number of key bits that can be used by
ASSURE (Kmax) is a design constraint that depends on the
technology for storing them in the circuit. ASSURE analyzes
the input design to identify which modules and which circuit
elements in modules must be protected. First, ASSURE does

Algorithm 1: ASSURE obfuscation.
1 Procedure ObfuscateModule(ASTm, K˚

r , Kmax)
Data: ASTm is the AST of the module m to obfuscate
Data: K˚

r is the current locking key
Data: Kmax is the maximum number of key bits to use
Result: AST˚

m is the obfuscated AST of the module m
Result: K˚

r is the updated locking key
2 BlackListÐ CreateBlackList(ASTm);
3 AST˚

m Ð BlackList;
4 ObfElemÐ DepthFirstAST(ASTm) z BlackList;
5 foreach el P ObfElem do
6 bel Ð BitReq(el);
7 if KeyLength(K˚

r)`bel ą Kmax then
8 AST˚

m Ð AST˚
m Y el;

9 else
10 Kel Ð GetObfuscationKey(el);
11 AST˚

m Ð AST˚
mY Obfuscate(el, Kel);

12 K˚
r Ð K˚

r YKel;

13 return tAST˚
m,K˚

r u

depth-first analysis of the design to uniquify the module
hierarchy and creates a list of modules to process. In this way,
ASSURE hides the semantics of the different modules so that
extracting knowledge from one instance does not necessarily
leak information on all modules of the same type.

After uniquifying the design, ASSURE analyzes the AST
of each module with Algorithm 1 starting from the innermost
ones. Given a hardware module, ASSURE first creates a “black
list” of the elements that must be excluded from obfuscation
(line 2). For example, the black list contains elements inside
reset and update processes or loop induction variables (see
Section III-B). The designer can also annotate the code to
specify that specific regions or modules must be excluded from
obfuscation (e.g., I/O processes or publicly-available IPs). The
black-list elements are added unchanged to the output AST
(line 3). Finally, ASSURE determines the list of AST elements
to obfuscate (line 4) and process them (lines 5-12). The
resulting list ObfElem follows the visit order of the depth-
first search. For each element, ASSURE computes the number
of bits required for obfuscation (line 6) and check if there are
enough remaining key bits (line 7). If not, ASSURE does not
obfuscate the element (line 8). Indeed, reusing a key bit across
multiple elements as in [10] reduces the security strength of
our scheme because extracting the key value for one element
invalidates the obfuscation of all others sharing the same
key bit. If the obfuscation is possible (lines 9-12), ASSURE
generates the corresponding key bits to be added to K˚r (line
10). These bits depend on the specific obfuscation technique
to be applied to the element and can be randomly generated,
extracted from an input key (see Fig. 2), or extracted from the
element itself (see Section III-B). ASSURE uses these key
bits to obfuscate the element and the result is added to the
output AST (line 11). The key bits are also added to the output
locking key (line 12). We repeat this procedure for all modules
until the top, which will return the AST of the entire design
and the final key. This approach leaves full control to the
designers that can explore trade-offs by providing constraints
on the number of bits and combining the depth-first analysis
with the annotations to exclude elements from obfuscation.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 4

B. ASSURE Obfuscations and Security Proofs

Each of the ASSURE techniques targets an essential ele-
ment to protect and uses a distinct part of the r-bit locking
key K˚r , to create an opaque predicate1. In software, an opaque
predicate is a predicate for which the outcome is certainly
known by the programmer, but requires an evaluation at run
time [14]. We create hardware opaque predicates, for which
the outcome is determined by ASSURE (and so known) at
design time, but requires to provide the correct key at run
time. Any predicate involving the extra parameter K˚r meets
this requirement. Given a locking key K˚r , ASSURE generates
a circuit indistinguishable from the ones generated with any
other Kr ‰ K˚r when the attacker has no prior information
on the design.

We show that ASSURE techniques offer provable security
guarantees [30]. Consider an m-input n-output Boolean func-
tion F : X Ñ Y , where X P t0, 1um and Y P t0, 1un.
Definition Obfuscation OpK˚r q transforms F into an m ` r-
input n-output function LK˚r defined as:

LK˚r pX,Kq “ OpFpXq,K˚r q (1)

where LK˚r : X
Ś

K Ñ Y and K P t0, 1ur are such that
‚ LK˚r pX,K

˚
r q “ FK˚r pXq “ FpXq

‚ LK˚r pX,Krq “ FKr
pXq ‰ FpXq when Kr ‰ K˚r

This definition shows CK˚r represents a family of Boolean
functions tFKr

u based on the generic r-bit key input Kr.
The functionality FpXq can be re-obtained uniquely with
the correct key K˚r . This is followed by a corollary about a
characteristic of the family of Boolean functions LK˚r .

Theorem 1. For an obfuscated netlist LK˚r pX,Kq created
from FpXq with obfuscation OpK˚r q, the unlocked functions
FK1

and FK2
(for keys K1 and K2) relate as follows:

FK1 ‰ FK2@K1,K2 P K : K1 ‰ K2 (2)

Proof. Let us first consider case (i) K1 “ K˚r . Therefore,
by the definition of RTL obfuscation scheme O, FK1 ‰

FK2
@K2 P K,K1 ‰ K2. Now, for case (ii) K1 ‰ K˚r ,

there exists a locked netlist LK˚r that locked FK1
using K1.

Therefore, FK2
= LK˚r pX,K2q. By the definition of logic

locking security, FK2
‰ FK1

@K2 ‰ K1 in LK˚r pX,Krq. �

We define P rLKr
|OpFpXq,Ks as the probability of obtain-

ing the locked design LKr
given that we locked the Boolean

function FpXq applying O with K. The RTL locking scheme
O is secure under the netlist-only threat model:

Theorem 2. A logic locking scheme O for r-bit key K is
secure for a family of Boolean functions FKr

of cardinality
2r if the following condition holds true:

P rLK1r |OpFpXq,K
˚
r qs “ P rLK1r |OpFKr pXq,Krqs

@Kr ‰ K˚r ,FpXq ‰ FKr pXq (3)

This theorem states any locking key FKr is equally probable
to generate the locked netlist LK1r generated by the locking
scheme O, creating a family of Boolean function FKr

pXq

1We use Verilog notation in the examples, but the approach is general.

all having the same probability to be the original Boolean
function FpXq. We show all our obfuscations satisfy these
two claims, providing a security guarantee of 2r under the
proposed threat model. This guarantee allows the designer to
choose the parameter r to match the technology issues for
storing the bits in the final IC. ASSURE will generate a locked
design with the corresponding level of security.

1) Constant Obfuscation: This obfuscation removes se-
lected constants and moves them into the locking key K as
shown in Fig. 3a. The original function is preserved only when
the key provides the correct constant values. Each constant bit
is a hardware-opaque predicate; the designer knows its value
and the circuit operation depends on it.
Example: Consider the RTL operation b = a +
5’b01010. To obfuscate the constant, we add a 5 bit
key K_c = 5’b01010. The RTL is rewritten as b =
a + K_c. The attacker has no extra information and 25

possibilities from which to guess the correct value. l

Hiding constant values allows designers to protect sensi-
tive information (e.g., proprietary implementations of digital
filters or cryptographic algorithms [33]) but also may prevent
subsequent logic optimizations (e.g., constant propagation and
wire trimming). However, several constants are unuseful and,
in some cases, problematic to protect. For example, reset
values are set at the beginning of the computation to a value
that is usually zero and then assigned with algorithm-related
values. Also, obfuscating reset polarity or clock sensitivity
edges of the processes introduces two problems: incorrect
register inferencing, which leads to synthesis issues of the
obfuscated designs, and incorrect reset process that easily leads
to identify the correct key value. In particular, if we apply
obfuscation to the reset processes and the attacker provides an
incorrect key value, the IC will be stalling in the reset state
when it is supposed to be in normal execution. So, we exclude
constants related to reset processes and sensitivity values from
obfuscation.

Proof. The structure of the obfuscated circuit is independent
of the constant and, given an r-bit constant, the 2r values are
indistinguishable. The attacker cannot get insights on the con-
stants from the circuit structure. ASSURE constant obfuscation
satisfies the provable security criteria of logic locking L under
strong adversarial model as defined in Theorem 2.

Let us consider an RTL design of m inputs and n outputs
R : X Ñ Y , X P t0, 1um and uses an r-bit constant C˚r .
ASSURE constant obfuscation converts the r-bit constant into
an r-bit key K˚r as a lock O and uses it to lock the design
LK˚r . The obfuscated constant Cr is depicted as follows:

Cr “ Kr (4)

where, Cr “ C˚r only when Kr “ K˚r “ C˚r .

Claim 1: Any unlocked constant CK1
and CK2

using r-bit
keys K1 and K2 are unique. (Theorem 1)

Proof. @K1 ‰ K2, K1,K2 P t0, 1u
r ùñ CK1

‰ CK2
. �

Claim 2: A constant-obfuscated circuit with r-bit key K can
be generated from 2r possible constants (each of r-bit) with

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 5

a 5’b01010

b

+

b = a + k_c

k_c = 5’b01010

constant to
obfuscate

a k_c

b

+

b = a + 5’b01010

(a) Constant obfuscation

a b

C

+

c = (a-b)&{8{k_o} | (a+b)&{8{~k_o}

k_o = 1’b0

Randomly generated

a b

c

-

c = a + b

Operation to
obfuscate

01k_o

+

(b) Operation obfuscation

a b

Test

>

if ((a<=b)^k_b) ...

k_b = 1’b1
Randomly generated

if (a > b) …

Branch to
obfuscate

a b

Test

<=
XOR

k_b

(c) Branch obfuscation

Fig. 3: Three ASSURE obfuscations. (a) Constant, (b) Operation, and (c) Branch. Each obfuscation uses a portion of the key.

equal probability, i.e. the following holds true.

P rCr|K “ K˚r s “ P rCr|K “ Krs

@Kr ‰ K˚r ;Kr P 2
r (5)

Proof. The probability of choosing Kr is uniform. So,
P rK “ K˚r s “ P rK “ Krs, @Kr ‰ K˚r
ùñ P rC˚r s “ P rCrs, C˚r ‰ Cr,@Cr P t0, 1u

r. �

Claims 1 and 2 jointly denote that the constant obfuscated
by 2r unique constants are indistinguishable and can be un-
locked uniquely by the correct r-bit key. Constant obfuscation
hides the original constants with a security strength of 2r.

In Fig. 5, we show area overhead of DES3 and RSA, two
CEP benchmarks [34]. This experiment shows that constant
obfuscation generates indistinguishable circuits. We consider
a variable from each benchmark: sel_round from DES3 and
modulus_m1_len from RSA. We generate different circuits
by assigning different constants to the same variable. We
synthesize these circuit variants and obtain the area overhead.
Fig. 5 shows that every constant value (c1´c5) can be reverse
engineered from the synthesized circuit since each constant
directly maps to unique area overhead. On the contrary, the
area overhead of synthesized circuits remain the same after
obfuscation, and the obfuscated circuits are indistinguishable,
making it difficult for the attacker to recover the constant.

2) Operation Obfuscation: We generate a random key bit
and use it to multiplex the operation result with that from
another operation sharing the same inputs, as shown in Fig. 3b.
The mux selector is a hardware opaque predicate because the
designer knows its value and the mux propagates the correct
result only for the correct key bit. This is similar to that
proposed for C- and HLS-level obfuscation [10], [35].
Example: Let us obfuscate RTL operation c = a + b with
a dummy subtraction. We generate a key bit k_o = 1’b0
and rewrite the RTL as c = k_o ? a - b : a + b. The
original function is selected for the correct k_o. l

The ternary operator is a simple representation of the
multiplexer, but it may impact code coverage. It introduces
extra branches in the circuit, where one of the paths is never
activated once the key is provided. To keep the same coverage
as the original design, we rewrite the mux selection as o =
in1 & k | in2 & „k.
Example: Operation c = a + b obfuscated as c =
k_o ? a - b : a + b can be written as c = (a -
b)&{8{k_o}} | (a + b)&{8{„k_o}}. This is equiva-
lent to ternary operation without branches, and has the same
code coverage. l

Since operations use the same inputs, ASSURE adds a
multiplexer at the output with its select connected to the
key bits. The multiplexer and the additional operator are area
overhead. The multiplexer impacts the critical path and the
additional operation introduces a delay when it takes more
time than the original one. We create a pool of alternatives
for each operation type. Original and dummy operations are
“balanced” in complexity to avoid increasing the area and
the critical path. Dummy operations are selected to avoid
structures the attacker can easily unlock. Incrementing a signal
by one cannot be obfuscated by a multiplication by one,
clearly a fake. Dummy operators are also selected to avoid
collisions. For example, adding a constant to a signal cannot
be obfuscated with a subtract because the wrong operation key
bit can activate the circuit when the attacker provides the two’s
complement of the constant.

Proof. Consider an RTL design with m inputs and n outputs,
with a mapping F : X Ñ Y , X P t0, 1um and with r possible
sites for operator obfuscation. ASSURE uses multiplexer-
based locking O with an r-bit key K˚r to lock the design
and generate LK˚r .

LK˚r “ FpX, k1, k2, .., krq
“ k1FpX, 0, k2, .., krq ` k1FpX, 1, k2, .., krq
“ K1

r FpX,K “ K1
rq

loooooooomoooooooon

FK1

`K2
r FpX,K “ K2

rq
loooooooomoooooooon

FK2

`..

..`K2r

r FpX,K “ K2r

r q
loooooooomoooooooon

FK2r

(6)

where, FK˚r pXq “ LK˚r pX,K “ K˚r q (K˚r is the r-bit
key). Each location of operator obfuscation applies output
of different operations (one original and another fake) to a
multiplexer. The following equation holds true for operator
obfuscation.

FpX, k1, .., ki “ 0, .., krq ‰ FpX, k1, .., ki “ 1, .., krq

@i P r1, rs (7)

Secondly, the sites of operation obfuscation are different. The
output of multiplexer using any key-bit value at one location
is independent of the choice made elsewhere. Given a key K,
the unlocked function of two circuits will be different if we
set same logic value at two different key-bit locations. For an
example K “ 1101, if one chooses bit location 2 and 4 and

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 6

flip them, i.e. K1 “ 1001,K2 “ 1100, then FK1
‰ FK2

.

FpX, k1, .., ki “ ki, .., krq ‰ FpX, k1, .., kj “ kj , .., krq

@i, j P r1, rs, i ‰ j (8)

Claim 1: Any pair of unlocked circuit FK1
r

and FK2
r

using
r-bit keys K1

r and K2
r on multiplexer-based obfuscated circuit

LK˚r are unique. (Theorem 1)

Proof. @K1
r ‰ K2

r , K1
r ,K

2
r P t0, 1u

r

ùñ Hamming distance pK1,K2q P r1, rs.
ùñ Eq. 7 + Eq. 8, FK1

‰ FK2
�

Claim 2: MUX-based obfuscation with r-bit key K can be
generated from r different locations having 2r operations with
equal probability, i.e. following condition holds true.

P rLKr
|OpFpXq,K˚r qs “ P rLKr

|OpFpXq,Ki
rqs

@Ki
r ‰ K˚r ;FKi

r
‰ FK˚r ; i P r1, 2

rs

Proof. The probability of choosing Kr is uniform. Therefore,
P[K = K˚r] = P[K = Ki

r], @K
i
r ‰ K˚r

ùñ P rLKr
pX,K “ K˚r sq “ P rLKr

pX,K “ Kirqs
ùñ P rFK˚r s “ P rFKi

r
s “ 1

2r . �

Claims 1 and 2 show that operator obfuscation can generate
indistinguishable netlists.

In Fig. 6, we demonstrate area overhead of the two bench-
mark circuits DES3 and RSA for operator obfuscation support-
ing our claims generate indistinguishable circuits. We consider
a single operation from each benchmark: addition of auxil-
iary input and round_output from DES3, and subtraction
of modulus_m1_len from a constant value in RSA. We
generate different circuits by replacing the original operators
with other operators. After synthesis, area overhead of these
variants (Fig. 6) are unique and can be reverse engineered. On
the contrary, the area overhead of synthesized circuits remain
the same after obfuscation and so the obfuscated circuits
reveals nothing about the original operator.

3) Branch Obfuscation: To hide which branch is taken after
the evaluation of an RTL condition, we obfuscate the test with
a key bit as cond_res xor k_b, as shown in Fig. 3c. To
maintain semantic equivalence, we negate the condition to re-
produce the correct control flow when k_b = 1’b1 because
the XOR gate inverts the value of cond_res. We apply
De Morgan’s law to propagate the negation to disguise the
identification of the correct condition. The resulting predicate
is hardware-opaque because the designer knows which branch
is taken but this is unknown without the correct key bit.
Example: Let a > b be the RTL condition to obfuscate
with key k_b = 1’b1. We rewrite the condition as (a <=
b)^k_b, which is equivalent to the original one only for the
correct key bit. The attacker has no additional information to
infer if the original condition is > or <=. l

Obfuscating a branch introduces a 1-bit XOR gate, so
the area and delay effects are minimal. Similar to constant
obfuscation, branch obfuscation is applied only when relevant.
For example, we do not obfuscate reset and update processes.
We apply the same technique to ternary operators. When
these operators are RTL multiplexers, this technique thwarts

the data propagation between the inputs and the output. The
multiplexer propagates the correct value with the correct key.

Proof. For an m input RTL design, we have a control-flow
graph (CFG) GpV,Eq having |V | nodes and |E| edges. We do
a depth-first-traversal of the CFG and order the r conditional
nodes in the way they are visited. Let the ordered set of condi-
tional nodes be VCN “ tv1, v2, ...vru, VCN Ă V (r “ |VCN |).
ASSURE applies XOR-based branch obfuscation to VCN with
r-bit key K˚r as the logic locking scheme O and generates a
locked design CK˚r . For example, if VCN “ tv1, v2, v3, v4u
and K “ 1101, then LpVCN q “ tv1, v2, v3, v4u. The locked
design, post branch-obfuscation is illustrated as follows.

LK˚r pGpV,Eq,Kq “ OpGpV,Eq,K˚r q “
GpOpVCN ,K˚r q Y pV zVCN q, Eq “
GppVCN ‘K

˚
r q Y pV zVCN q, Eq (9)

where GpV,Eq “ LK˚r pGpV,Eq,K “ K˚r q.
Claim 1: The unlocked CFGs LK˚r pGpV,Eq,K1q and
LK˚r pGpV,Eq,K2 using r-bit keys K1 and K2, respectively,
on the XOR-based encrypted CFG LK˚r pGpV,Eq,Kq are
unique.

Proof. @K1 ‰ K2, K1,K2 P t0, 1u
r

ùñ K1 ‘ VCN ‰ K2 ‘ VCN ùñ V 1
CN ‰ V 2

K2
.

ùñ GpV 1
CN , Eq ‰ GpV 2

CN , Eq. �

Claim 2: The obfuscated CFG LK˚r pGpV,Eq,Kq can be
generated from 2r possible combination of condition statuses
with equal probability, i.e. the following condition holds true.

P rLK1r pGpV,Eq,Kq|GppVCN ‘K
˚
r q Y pV zVCN q, Eqs “

P rLK1r pGpV,Eq,Kq|GppVCN ‘K˚rq Y pV zVCN q, Eqs

@Kr ‰ K˚r ;V
r
CN ‰ VCN (10)

Proof. The probability of choosing Kr is uniform. So,
P rK “ K˚r s “ P rK “ Kr], @Kr ‰ K˚r ,Kr P 2r
ùñ P rpVCN ‘K˚r q ‘K˚r s “ P rpVCN ‘K˚r q ‘Krs
ùñ P rVCN s “ P rV rCN s, VCN ‰ V rCN ,
V rCN “ tp1, p2, .., pi, .., pru, where pi P tvi, viu. �

Combining claims 1 and 2 shows that the encrypted CFGs are
indistinguishable for a family of 2r possible designs.

In Fig. 7, we report the area overhead of the two bench-
mark circuits DES3 and RSA in case of branch obfuscation
showing empirical evidence of our claim that obfuscated
circuits are indistinguishable. We identify five conditions from
each benchmark and generated five different variants, flipping
each condition at a time. After synthesizing the circuits, we
observed that area overhead is uniquely mapped to each variant
of the design. The conditions in the CFG can be easily
reverse engineered from the synthesized circuit and the flow
of design can be unlocked. On the contrary, the area overhead
of synthesized circuits remain the same after obfuscation,
indicating the obfuscated circuits reveal no information about
the control-flow of the circuit.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 7

TABLE I: Characteristics of the input RTL benchmarks.
Suite Design Modules Const Ops Branches Tot Bits Comb cells Seq cells Buf cells Inv cells # nets Area (µm2) Delay (ns)

CEP

AES 657 102,403 429 1 819,726 127,667 8,502 506 21,812 136,493 42,854.69 136.75
DES3 11 4 3 775 898 2,076 135 128 368 2,448 736.96 192.28
DFT 211 447 151 132 8,697 118,201 38,521 9,552 41,320 158,807 81,865.94 336.72
FIR 5 10 24 0 344 820 439 49 225 1,704 1,129.36 377.76
IDFT 211 447 151 132 8,697 118,154 38,525 9,576 41,305 158,722 81,821.90 333.59
IIR 5 19 43 0 651 1,378 648 72 367 2,621 1,679.72 464.82
MD5 2 150 50 1 4,533 4,682 269 168 923 5,756 1,840.15 791.53
RSA 15 243 35 13 1,942 222,026 57,987 21,808 66,088 280,222 134,907.05 386.55
SHA256 3 159 36 2 4,992 5,574 1,040 243 1,024 7,532 3,201.07 440.67

IWLS

MEM_CTRL 27 492 442 160 2,096 4,007 1,051 120 1,136 5,183 2,373.35 260.72
SASC 3 35 27 17 126 367 116 0 125 500 238.24 84.40
SIMPLE_SPI 3 55 34 15 288 476 130 2 145 623 282.57 119.42
SS_PCM 1 5 10 3 24 231 87 1 94 338 168.29 90.51
USB_PHY 3 67 70 34 223 287 98 0 85 401 194.15 71.91

OpenCores
ETHMAC 66 487 1,217 218 3,849 34,783 10,545 2,195 12,021 45,441 22,453.76 190.44
I2C_SLAVE 4 104 14 11 269 466 125 0 126 596 160.28 125.44
VGA_LCD 16 123 310 56 885 54,614 17,052 4,921 19,228 71,766 36,095.90 224.67

OpenROAD
ARIANE_ID 4 3,498 385 723 4,606 1,993 378 96 559 2,615 980.97 225.48
GCD 11 15 4 12 496 168 34 3 32 253 100.91 161.87
IBEX 15 14,740 5,815 6,330 26,885 12,161 1,864 978 2,965 14,379 5,758.84 538.10

IV. EXPERIMENTAL VALIDATION OF ASSURE

A. Experimental Setup

We implemented ASSURE as a VerilogÑVerilog tool that
leverages Pyverilog [36], a Python-based hardware design
processing toolkit to manipulate RTL Verilog. Pyverilog parses
the input Verilog descriptions and creates the design AST. AS-
SURE then manipulates the AST. Pyverilog then reproduces
the output Verilog description ready for logic synthesis.

We used ASSURE to protect several Verilog designs from
different sources2: the MIT-LL Common Evaluation Platform
(CEP) platform [34], the OpenROAD project [37], and the
OpenCores repository [38]. Four CEP benchmarks (DCT,
IDCT, FIR, IIR) are created with Spiral, a hardware genera-
tor [39]). Table I shows the characteristics of these benchmarks
in terms of number of hardware modules, constants, opera-
tions, and branches. This data also characterizes the function-
ality that needs obfuscation. The benchmarks are much larger
than those used by the gate-level logic locking experiments
by the community [9]. Differently from [10], ASSURE does
not require any modifications to synthesis tools and applies
to pre-existing industrial designs, processing the Verilog RTL
descriptions with no modifications.

We analyzed the ASSURE in terms of security (Sec-
tion IV-B and Section IV-C) and overhead (Section IV-D). For
each benchmark, we created obfuscated variants using all tech-
niques (ALL) or one of constant (CONST), operation (OP),
and branch (BRANCH) obfuscations. We repeat experiments
by constraining the number of key bits available: 25%, 50%,
75% or 100% and reported in Table I. The resulting design is
then identified by a combination of its name, the configuration,
and the number of key bits. For example, DFT-ALL-25
indicates obfuscation of the DFT benchmark, where all three
obfuscations are applied using 2,175 bits for obfuscation (25%
of 8,697) as follows: 38 for operations (25% of 151), 33 for
branches (25% of 132) and the rest (2,104) for constants.

2Supporting VHDL and SystemVerilog only requires proper HDL parsers.

B. Correctness and Key Effects

We first apply formal verification on the locked design
against the unprotected design with a twofold goal. First, we
show that, when the correct key K˚r is used, the unlocked
circuit matches the original. We label this experiment as
CORRECTNESS. Second, we show that flipping each single
key bit induces at least a failing point (i.e., no collision).
This experiment demonstrates that each key bit has an effect
on the functionality of the circuit. We label this experiment
as KEY EFFECT. We show no other key can activate the
same IC, i.e., all other circuits (Kr ‰ K˚r) are not exact
copies of the original designs. In this experiment, we also aim
at quantifying how the obfuscation techniques affect the IC
functionality when the attacker provides incorrect keys. With
formal verification, we focus on IC functionality rather than
IC results. We compute the verification failure metric as:

F “
1

K
¨

K
ÿ

i“1

npFailingPointsqi
npTotalPointsq

(11)

This metric is the average fraction of verification points that
do not match when testing with different wrong keys. We
experimented using Synopsys Formality N-2017.09-SP3.

1) Correctness: We apply ASSURE several times, each
time with a random key to obfuscate operations and branches
(constants are always extracted in the same way. We formally
verified these designs against the original ones. In all exper-
iments, ASSURE generates circuits that match the original
design when using the correct key.

2) Key Effect: Given a design obfuscated with an r-bit key,
we performed r experiments where in each of them we flipped
only one key bit with respect to the correct key. In all cases,
formal verification identifies at least one failing point, showing
that an incorrect key always alters the circuit functionality.
Varying the locking key has no effect since the failure is
induced by the flipped bit (from correct to incorrect) and not
its value. Fig. 4 shows the verification failure metrics for each
experiment. Results are not reported for FIR-BRANCH-*
and IIR-BRANCH-* because they have no branches. AES,

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 8

0

0.2

0.4

0.6

0.8

1.0

CEP-AES

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-DES3

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-DFT

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-FIR

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-IDFT

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

0

0.2

0.4

0.6

0.8

1.0

CEP-IIR

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-MD5

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-RSA

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

CEP-SHA256

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

IWLS-MEM_CTRL

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

0

0.2

0.4

0.6

0.8

1.0

IWLS-SASC

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

IWLS-SIMPLE_SPI

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

IWLS-SS_PCM

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

IWLS-USB_PHY

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

OPENCORES-ETHMAC

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

0

0.2

0.4

0.6

0.8

1.0

OPENCORES-I2C_SLAVE

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

OPENCORES-VGA_LCD

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

OPENROAD-ARIANE_ID

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

OPENROAD-GCD

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

OPENROAD-IBEX

C
-2
5

C
-5
0

C
-7
5

C
-1
00

O
-2
5

O
-5
0

O
-7
5

O
-1
00

B-
25

B-
50

B-
75

B-
10
0

A-
25

A-
50

A-
75

A-
10
0

Fig. 4: Verification failure metric in KEY-EFFECT experiments.

765

770

orig c1 c2 c3 c4 c5735

740

des3

Ar
ea

 (
2) Obfuscated

Original
0

10

+1.351e5

orig c1 c2 c3 c4 c50

10

+1.349e5

rsa

Obfuscated
Original

Fig. 5: Area of original and obfuscated variants of DES3 and
RSA when synthesized with different constants (c1´ c5).

DFT, IDFT, and OPENCORES-ETHMAC benchmarks have
low values („10´5) since they have many verification points
and only a small part is failing. Operations and constants
vitally impact the design as obfuscating them induces more
failing points. Increasing the number of obfuscated operations
reduces the metric. Since obfuscation is performed using a
depth-first analysis, the first bits correspond to operations
closer to the inputs. As the analysis proceeds, obfuscation is
closer to the output and more internal points match.

This experiment allowed us to identify design practices
that lead to inefficient obfuscations or even collisions. In
DFT, one-bit signals were initialized with integer values 0/1.
Verilog allows this syntax and signals are trimmed by logic
synthesis. A naive RTL constant analysis would pick 32 bits

orig c1 c2 c3 c4 c5
710

720

730

740

des3

Ar
ea

 (
2) Obfuscated

Original

0

5 +1.3503e5

orig c1 c2 c3 c4 c50

5

10

15 +1.349e5

rsa

Obfuscated
Original

Fig. 6: Area of original and obfuscated variants of benchmarks
DES3 and RSA using different operators in the statement.

for obfuscating a single-bit. Since only the least significant bit
impacts the circuit function, flipping the other 31 bits would
lead to a collision. So, we extended ASSURE AST analysis
to match the constant sizes with those of the target signals.

C. Resilience Against Locking Attacks

We outlined provable security guarantees that n obfuscation
bits induce 2n RTL designs with uniform probability. We now
discuss resilience to known locking attacks.

1) Resynthesis Attacks: Massad et al. [30] showed that
greedy heuristics can recover the key of an obfuscated gate-
level netlist. Performing re-synthesis with an incorrect key may
trigger additional optimizations that produce large redundancy

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 9

TABLE II: Security assessment of ASSURE obfuscation against redundancy attacks [17] (without oracle) and KC2 attacks [40]
(with oracle). Failed denotes attack failure due to non-existence of untestable faults for redundancy attacks and due to unsolvable
constraints or incorrect key generation for KC2 attacks. Timeout denotes tool termination after 96 hours without returning the
key. CFG1, CFG2, CFG3, and CFG4 corresponds to 25%, 50%, 75%, and 100% of maximum possible key-bit obfuscation,
respectively. (X/Y) in redundancy attack indicate X keybits are correct out of Y keybits recovered by the redundancy attack.

Bench
mark

Obf.
Type

Attack
with

oracle
access?

Obfuscation configuration
CFG1 CFG2 CFG3 CFG4

Key
(bits)

Recovered
(bits)

Time
(s)

Key
(bits)

Recovered
(bits)

Time
(s)

Key
(bits)

Recovered
(bits)

Time
(s)

Key
(bits)

Recovered
(bits)

Time
(s)

DES3
All no 225 20/34 5,655 450 31/54 20,860 675 0 timeout 900 0 timeout

yes 225 13,447 450 16,216 0 failed 0 timeout

Constant no 30 0/8 264 60 0/8 968 90 0/10 1,456 120 0/10 2,575
yes 30 2,324 60 5,398 0 failed 120 8,476

FIR
All no 86 4/32 3,269 164 7/45 26,045 250 12/67 39,025 336 0 timeout

yes 0 1,372 0 failed 0 5,665 0 timeout

Constant no 80 0/25 2,989 152 0/26 22,697 232 0/52 33,156 312 0 timeout
yes 0 1,189 0 failed 0 5,145 0 timeout

MD5
All no 1,135 0 timeout 2,267 0 timeout 3,401 0 timeout 4,533 0 timeout

yes 0 failed 0 timeout 0 timeout 0 timeout

Constant no 1,121 0 timeout 2,241 0 timeout 3,362 0 timeout 4,482 0 timeout
yes 0 failed 0 timeout 0 timeout 0 timeout

SHA256
All no 1,250 0 timeout 2,496 0 timeout 3,745 0 timeout 4,992 0 timeout

yes 0 failed 0 failed 0 timeout 0 timeout

Constant no 1,239 0 timeout 2,477 0 timeout 3,716 0 timeout 4,954 0 timeout
yes 0 failed 0 failed 0 timeout 0 timeout

SS_PCM
All no 7 0/4 2 13 0/4 3 18 1/5 5 24 1/5 7

yes 7 843 13 170 18 1,308 0 6,052

Constant no 3 0/0 2 6 0/0 2 8 0/0 3 11 0/0 5
yes 3 289 6 310 8 784 0 1897

GCD
All no 11 3/11 8 23 5/15 8 34 7/17 12 47 9/16 14

yes 0 8 0 15 0 15 0 21

Constant no 7 0/0 6 15 0/4 7 22 0/8 11 31 0/8 14
yes 0 7 0 7 0 14 0 19

USB_
PHY

All no 57 15/21 17 112 0 failed 163 34/75 105 223 47/86 184
yes 0 521 0 548 0 898 0 360

Constant no 30 0/0 14 60 0 failed 89 0/5 97 119 0/10 152
yes 0 510 0 522 0 524 0 347

970.0

orig c1 c2 c3 c4 c5
732.5

735.0

737.5

740.0

des3

Ar
ea

 (
2) Obfuscated

Original

orig c1 c2 c3 c4 c5

5

10

15
+1.349e5

rsa

Obfuscated
Original

Fig. 7: Area of original and obfuscated variants of benchmarks
DES3 and RSA in case of different CFG flows.

in the circuit. Similarly, Li et al. [17] propose an attack using
concepts from VLSI testing. Incorrect key results in large logic
redundancy and most of stuck-at faults become untestable.
A correctly unlocked circuit, however, has high testability.
ASSURE obfuscates RTL design before synthesis. Since the
obfuscated RTL is equally likely to be generated from 2n

designs, logic synthesis using different keys on a reverse-
engineered obfuscated netlist reveals no information about the
original netlist. Hence, the area overhead for the correct and
incorrect keys are in same range (see Figs. 5, 6 and 7).

2) ML-guided Attacks: Chakraborty et al. [31], [32] pro-
posed oracle-less attacks on logic obfuscation based on the
idea that obfuscation techniques insert XOR/XNOR gates
that leave structural traces. The key gates are inserted before
synthesis with known technology library and synthesis process
(algorithms and tools). Since the effect of logic optimizations
are local and the optimization rules are deterministic, one

can recover the original function by launching an ML-guided
removal attack on the obfuscated RTL design. In ASSURE,
the obfuscation logic does not depend solely on the insertion
of XOR/XNOR gates. For example, in branch obfuscation, we
perform also logic inversion of the condition instead of simply
adding a XOR gate followed by a NOT when the correspond-
ing key bit is 1. Recovering the original RTL from obfuscated
RTL is hard (see claim 2 of ASSURE branch obfuscation proof
in Section III-B3). Also, recovering extracted constants from
an obfuscated design is impossible since the obfuscated circuit
does not contain any information on the constant value.

3) Redundancy and KC2 Attacks: We analyze the strength
of ASSURE’s obfuscation by running oracle-less redundancy
attacks [17]. Redundancy attacks decipher the key bits by
identifying redundant lines in the synthesized netlist with
incorrect key bits. KC2 is an improved version of SAT-
based attacks incrementally unrolling a sequential circuit to
recover the key. Even if ASSURE is not designed to protect
against oracle-guided attacks, we evaluated its performance on
KC2 [40], a popular oracle-guided attack. We have run both
attacks with a timeout of 96 hours and 50 GB of memory
for each attack run. Table II summarizes the results of both
attacks on selected ASSURE obfuscated designs. In particular,
we apply the attacks to benchmarks that we can safely convert
into the format required by the attack tools. We perform the
attacks after applying all obfuscations (ALL) or after applying
only constant obfuscation (Constant). Constant obfuscation
successfully thwarts all redundancy attacks showing this is
the most powerful obfuscation. Indeed, on benchmarks like

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 10

DES3, FIR, SS_PCM, and USB_PHY, redundancy attacks
recovered some key bits. These results indicate that combining
different obfuscation techniques is not 100% secure compared
to stand-alone obfuscation. Even if we focused on the netlist-
only threat model, it is interesting to evaluate the effects
of oracle-guided attacks. KC2 attacks were able to recover
the correct keys only for DES3 and SS_PCM benchmarks.
In all other cases, KC2 claimed to recover certain key bits.
However, the equivalence checking performed by ABC within
the tool showed the functionality unlocked with those bits is
not equivalent with the original one, i.e. the key is incorrect.

D. Synthesis Overhead

We did logic synthesis using the Synopsys Design Compiler
J-2018.04-SP5 targeting the Nangate 15nm ASIC technology
at standard operating conditions (250C). We evaluated the
area overhead and critical-path delay degradation relative to
the original design. While our goal is to protect the IP
functionality and not to optimize the resources, designs with
lower cost are preferred. ASSURE generates correct designs
with no combinational loops. Constant obfuscation extracts
the values that are used as the key and no extra logic. Oper-
ation obfuscation multiplexes results of original and dummy
operations. Branch obfuscation adds XOR to the conditions.

1) Area overhead: Table I reports the results of the original
design – the number of cells in the netlists, the area (in
µm2) and the critical-path delay (in ns). Fig. 9 reports
the area overhead of all obfuscations with respect to the
original designs. The three techniques are independent and
so, ALL results are the aggregate of the three techniques.
Constant obfuscation produces an average overhead in the
range 18% (*-CONST-25) to 80% (*-CONST-100). The
maximum overhead is about 450% for AES-CONST-100,
which has the most number obfuscated constants. ASSURE
removes hard-coded constants from the circuit, preventing
logic optimizations like constant propagation. In AES, all S-
Box modules are optimized as logic in the original circuit. This
optimization is not possible anymore when the constants are
provided as inputs. However, we showed this obfuscation pro-
vides maximum protection since the constants are semantically
removed from the circuit. The average operation obfuscation
overhead is in the range 9% (*-OP-25) to 25% (*-OP-100).
IBEX-OP-100 has the maximum overhead of 155% since
it has the most operations. Branch obfuscation produces a
smaller average overhead, in the range 6% (*-BRANCH-25)
to 14% (*-BRANCH-100) with a maximum overhead of
113% for DES-BRANCH-100. This benchmark has the largest
proportion of branches relative to other elements. MD5 re-
sults in savings („4%) when we apply branch obfuscation
(MD5-BRANCH-*). The branch conditions help pick elements
from the library that lower area overhead.

The real impact of ASSURE depends on how many ele-
ments are obfuscated in each configuration. So, we computed
the area overhead per key bit as the area overhead of a
configuration divided by the number of key bits used for its
obfuscation and report it in Fig. 8. In most cases, operation
obfuscation has the largest impact, followed by branches

and then constants. This impact is larger for data-intensive
benchmarks, like CEP filters (DFT, IDFT, FIR, and IIR).
Constants usually require more obfuscation bits, so the impact
per bit is smaller. Each obfuscated operation introduces a
new functional unit and multiplexer per key bit. MD5 has a
large negative impact when obfuscating the branches justifying
the area reduction when we apply only branch obfuscation
(MD5-BRANCH-*). On the contrary, even if AES was the
benchmark with the largest overhead (and many more bits),
its overhead per key bit is comparable with the others. We re-
peated the experiments several times and we observed minimal
variants with different locking keys.

To conclude the area overhead is related to the design
characteristics and to the number of key bits. The former
determine the impact of ASSURE, while the latter determine
the total amount of overhead. The overhead depends on the
design, the techniques, and the number of key bits and not on
the values of the locking key.

2) Timing overhead: Fig. 10 shows the overhead introduced
by the ASSURE obfuscation logic on the critical path when
targeting area optimization. Timing overhead is application
dependent with similar results across the different techniques.
The overhead is larger when the obfuscated elements are
on the critical path. This is relevant in data-intensive (with
many operations) and control-intensive (with control branches
on critical path) designs. In most benchmarks, the timing
overhead is ă20%. Constants have a positive impact on the
overhead (see AES and DES3). The obfuscated designs can
generally achieve the same performance as the original ones,
limiting the impact on the IC design flow.

V. DISCUSSION AND CONCLUDING REMARKS

We presented ASSURE, an RTL locking framework against
an untrusted foundry that has no access to an unlocked
functional chip. ASSURE operates on the Verilog RTL de-
scription and is fully compatible with industrial EDA flows.
We discuss the major contributions in the form of Q&A.
§ Which threat model are you considering? How is it
relevant for my design? We consider the netlist-only threat
model where the attacker has no access to an activated chip.
This model is relevant especially for an untrusted foundry with
low-volume IC production.
§ Why should I use an RTL approach instead of existing
gate-level techniques? ASSURE hides the essential semantics
(constants, operations, and control-flow branches) in a way that
is indistinguishible and provably secure against attackers with
no prior knowledge of the IP function. Most of the semantic
information (e.g., constants) cannot be protected at the gate
level because synthesis tools embed it into the netlist.
§ Is ASSURE secure? In our experimental analysis with
formal verification and logic synthesis EDA tools, we show
the circuits can be unlocked only with the correct key and
obfuscating the design closer to the inputs induces more
verification failures. Also, ASSURE can thwart oracle-less
attacks that can recover key bits even in case of SAT-resilient
protections, showing the two approaches must be combined.
§ What is the overhead? ASSURE obfuscations introduce
area overhead that depends on the obfuscation techniques and

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 11

25% 50% 75% 100%

0×

0.05×

0.10×

CEP-RSA
CONST OP BRANCH ALL

OPENCORES-VGA_LCD
CONST OP BRANCH ALL

CEP-DFT
CONST OP BRANCH ALL

CEP-IDFT
CONST OP BRANCH ALL

OPENCORES-ETHMAC
CONST OP BRANCH ALL

0×

0.2×

0.4×

IWLS-SS_PCM
CONST OP BRANCH ALL

IWLS-SASC
CONST OP BRANCH ALL

OPENROAD-GCD
CONST OP BRANCH ALL

IWLS-SIMPLE_SPI
CONST OP BRANCH ALL

CEP-SHA256
CONST OP BRANCH ALL

0×

0.5×

1.0×

1.5×

2.0×

IWLS-MEM_CTRL
CONST OP BRANCH ALL

IWLS-USB_PHY
CONST OP BRANCH ALL

CEP-DES3
CONST OP BRANCH ALL

OPENCORES-I2C_SLAVE
CONST OP BRANCH ALL

OPENROAD-ARIANE.ID_STAGE
CONST OP BRANCH ALL

0×

2×

4×

CEP-MD5
CONST OP BRANCH ALL

CEP-FIR
CONST OP BRANCH ALL

OPENROAD-IBEX
CONST OP BRANCH ALL

CEP-IIR
CONST OP BRANCH ALL

CEP-AES
CONST OP BRANCH ALL

-0.2×
0×

0.2×
BRANCH

Fig. 8: Area overhead for ASSURE obfuscation. Benchmarks are presented in increasing order of total overhead.

CONST
OP
BRANCH

μm
2 /

ke
y

bi
t

0

0.5

1.0

1.5

2.0

2.5

IWLS-SASC

OPENCORES-ARIANE.ID_STAGE

OPENCORES-VGA_LCD

IWLS-USB_PHY

OPENCORES-ETHMAC

IWLS-SS_PCM

IWLS-MEM_CTRL

IWLS-SIMPLE_SPI

OPENROAD-IBEX

CEP-DES3

CONST
OP
BRANCH

−75

−40

μm
2 /

ke
y

bi
t

0

20

40

OPENCORES-GCD

CEP-IDFT

CEP-DFT

CEP-RSA

OPENCORES-I2C_SLAVE

CEP-SHA256
CEP-FIT

CEP-IIR

CEP-AES

CEP-MD5

Fig. 9: Area overhead per key bit for ASSURE obfuscation. Benchmarks are presented in increasing order of total overhead.

is proportional to the number of key bits. In case of constants,
obfuscation prevent logic optimizations, like constant propa-
gation, while operation obfuscation has the largest overhead
per key bit. The key values have no impact on the obfuscation
results. ASSURE has no impact on the clock cycles but only
on the critical path delay in a way that depends on where the
obfuscation is applied. The designers can use these guidelines
to apply obfuscation on their design.

ACKNOWLEDMENTS

The authors would like to thank Benjamin Tan (NYU) and
Jitendra Bhandari (NYU) for their support in implementing
locking attacks. The research is supported in part by NSF
Award (# 1526405), ONR Award (# N00014-18-1-2058), NSF
CAREER Award (# 1553419), the NYU Center for Cybersecu-
rity (cyber.nyu.edu), and the NYUAD Center for Cybersecurity
(sites.nyuad.nyu.edu/ccs-ad).

REFERENCES

[1] S. W. Jones, “Technology and Cost Trends at Advanced Nodes,” IC
Knowledge LLC, 2019.

[2] J. Hurtarte, E. Wolsheimer, and L. Tafoya, Understanding Fabless IC
Technology. Elsevier, Aug. 2007.

[3] S. Heck, S. Kaza, and D. Pinner, “Creating value in the semiconductor
industry,” McKinsey on Semiconductors, pp. 5–144, Oct. 2011.

[4] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit Integrated Circuits: A rising threat in the global
semiconductor supply chain,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1207–1228, Aug. 2014.

[5] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L. Wang, “Challenges and
trends in modern SoC design verification,” IEEE Design & Test, vol. 34,
no. 5, pp. 7–22, Oct. 2017.

[6] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing
secure?” in Proceedings of the Design, Automation & Test in Europe
Conference (DATE), 2013, pp. 1259–1264.

[7] A. T. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “IP watermarking
techniques: Survey and comparison,” in IEEE International Workshop
on System-on-Chip for Real-Time Applications, 2003, pp. 60–65.

[8] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin,
“IP protection and supply chain security through logic obfuscation:

cyber.nyu.edu
sites.nyuad.nyu.edu/ccs-ad

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 12

25% 50% 75% 100%

−0.2×

0×

0.2×

CEP-SHA256
CONST OP BRANCH ALL

IWLS-SIMPLE_SPI
CONST OP BRANCH ALL

OPENROAD-GCD
CONST OP BRANCH ALL

CEP-AES
CONST OP BRANCH ALL

IWLS-SS_PCM
CONST OP BRANCH ALL

0×

0.1×

0.2×

0.3×

CEP-DES3
CONST OP BRANCH ALL

IWLS-SASC
CONST OP BRANCH ALL

CEP-RSA
CONST OP BRANCH ALL

CEP-MD5
CONST OP BRANCH ALL

CEP-DFT
CONST OP BRANCH ALL

0×

0.5×

1.0×

OPENCORES-I2C_SLAVE
CONST OP BRANCH ALL

CEP-IDFT
CONST OP BRANCH ALL

IWLS-USB_PHY
CONST OP BRANCH ALL

OPENCORES-VGA_LCD
CONST OP BRANCH ALL

IWLS-MEM_CTRL
CONST OP BRANCH ALL

0.0×

1.0×

2.0×

3.0×

OPENCORES-ETHMAC
CONST OP BRANCH ALL

CEP-FIR
CONST OP BRANCH ALL

OPENROAD-IBEX
CONST OP BRANCH ALL

OPENROAD-ARIANE.ID_STAGE
CONST OP BRANCH ALL

CEP-IIR
CONST OP BRANCH ALL

Fig. 10: Timing overhead for ASSURE obfuscation. Benchmarks are presented in increasing order of total overhead.

A systematic overview,” ACM Transactions on Design Automation of
Electronic Systems, vol. 24, no. 6, Sep. 2019.

[9] B. Tan, R. Karri, N. Limaye, A. Sengupta, O. Sinanoglu, M. M. Rahman,
S. Bhunia, D. Duvalsaint, R. Blanton, A. Rezaei, Y. Shen, H. Zhou,
L. Li, A. Orailoglu, Z. Han, A. Benedetti, L. Brignone, M. Yasin,
J. Rajendran, M. Zuzak, A. Srivastava, U. Guin, C. Karfa, K. Basu,
V. V. Menon, M. French, P. Song, F. Stellari, G.-J. Nam, P. Gadfort,
A. Althoff, J. Tostenrude, S. Fazzari, E. Breckenfeld, and K. Plaks,
“Benchmarking at the frontier of hardware security: Lessons from logic
locking,” arXiv, 2020.

[10] C. Pilato, F. Regazzoni, R. Karri, and S. Garg, “TAO: Techniques for
algorithm-level obfuscation during high-level synthesis,” in Proceedings
of the Design Automation Conference (DAC), Jun. 2018, pp. 1–6.

[11] G. Di Crescenzo, A. Sengupta, O. Sinanoglu, and M. Yasin, “Logic
locking of boolean circuits: Provable hardware-based obfuscation from a
tamper-proof memory,” in Innovative Security Solutions for Information
Technology and Communications, E. Simion and R. Géraud-Stewart,
Eds. Cham: Springer International Publishing, 2020, pp. 172–192.

[12] Y. Lao and K. K. Parhi, “Obfuscating DSP circuits via high-level
transformations,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 5, pp. 819–830, 2015.

[13] R. S. Chakraborty and S. Bhunia, “RTL hardware IP protection using
key-based control and data flow obfuscation,” in Proceedings of the
International Conference on VLSI Design, 2010, pp. 405–410.

[14] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep. 148, 1997.

[15] C. K. Behera and D. L. Bhaskari, “Different obfuscation techniques
for code protection,” in Proceedings of the International Conference on
Eco-friendly Computing and Communication Systems, vol. 70, 2015, pp.
757 – 763.

[16] H. Xu, Y. Zhou, Y. Kang, and M. R. Lyu, “On secure and usable program
obfuscation: A survey,” ArXiv, 2017.

[17] L. Li and A. Orailoglu, “Piercing logic locking keys through redundancy
identification,” in Proceedings of the Design, Automation & Test in
Europe Conference (DATE), 2019, pp. 540–545.

[18] D. Sisejkovic, F. Merchant, L. M. Reimann, H. Srivastava, A. Hallawa,
and R. Leupers, “Challenging the security of logic locking schemes in

the era of deep learning: A neuroevolutionary approach,” ACM Journal
on Emerging Technologies in Computing Systems, 2020.

[19] S. Amir, B. Shakya, X. Xu, Y. Jin, S. Bhunia, M. Tehranipoor, and
D. Forte, “Development and evaluation of hardware obfuscation bench-
marks,” Journal of Hardware and Systems Security, vol. 2, pp. 142–161,
2018.

[20] Y. Shen, Y. Li, A. Rezaei, S. Kong, D. Dlott, and H. Zhou, “BeSAT:
Behavioral SAT-based Attack on Cyclic Logic Encryption,” in Proceed-
ings of the Asia and South Pacific Design Automation Conference (ASP-
DAC), 2019, pp. 657–662.

[21] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199–207, Feb. 2019.

[22] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,”
in Conference on Computer and Communications Security, 2017, pp.
1601–1618.

[23] M. Yasin, C. Zhao, and J. J. Rajendran, “SFLL-HLS: Stripped-
functionality logic locking meets high-level synthesis,” in Proceedings
of the International Conference on Computer-Aided Design (ICCAD),
2019, pp. 1–4.

[24] F. Yang, M. Tang, and O. Sinanoglu, “Stripped Functionality Logic
Locking with Hamming Distance Based Restore Unit (SFLL-hd) –
unlocked,” IEEE Transactions on Information Forensics and Security,
pp. 1–9, 2019.

[25] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic
locking,” in Proceedings of the Design, Automation & Test in Europe
Conference (DATE), Mar. 2019, pp. 1–6.

[26] N. Limaye, E. Kalligeros, N. Karousos, I. G. Karybali, and O. Sinanoglu,
“Thwarting all logic locking attacks: Dishonest oracle with truly random
logic locking,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 2020.

[27] K. Shamsi, D. Z. Pan, and Y. Jin, “On the impossibility of
approximation-resilient circuit locking,” in IEEE International Sympo-
sium on Hardware Oriented Security and Trust, 2019, pp. 161–170.

[28] Defense Science Board Task Force, “Report on high performance
microchip supply,” https://www.hsdl.org/?abstract&did=454591, 2005.

[29] J. Rajendran, A. Ali, O. Sinanoglu, and R. Karri, “Belling the cad:

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (TVSLI) SYSTEMS, APRIL 2021 13

Toward security-centric electronic system design,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 11, pp. 1756–1769, Nov. 2015.

[30] M. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic locking
for secure outsourced chip fabrication: A new attack and provably secure
defense mechanism,” arXiv, 2017.

[31] P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine learning guided
structural analysis attack on hardware obfuscation,” in Proceedings of the
Asian Hardware Oriented Security and Trust Symposium (AsianHOST),
2018, pp. 56–61.

[32] P. Chakraborty, J. Cruz, and S. Bhunia, “SURF: Joint structural func-
tional attack on logic locking,” in International Symposium on Hardware
Oriented Security and Trust (HOST), 2019, pp. 181–190.

[33] S. Picek, L. Batina, D. Jakobović, B. Ege, and M. Golub, “S-box,
SET, Match: A toolbox for S-box analysis,” in Information Security
Theory and Practice. Securing the Internet of Things. Springer Berlin
Heidelberg, 2014, pp. 140–149.

[34] MIT Lincoln Laboratory, “Common Evaluation Platform (CEP),” Avail-
able at: https://github.com/mit-ll/CEP.

[35] H. Badier, J. L. Lann, P. Coussy, and G. Gogniat, “Transient key-based
obfuscation for hls in an untrusted cloud environment,” in Proceedings
of the Design, Automation & Test in Europe Conference (DATE), 2019,
pp. 1118–1123.

[36] S. Takamaeda-Yamazaki, “Pyverilog: A Python-based hardware design
processing toolkit for Verilog HDL,” in Proceedings of the International
Symposium on Applied Reconfigurable Computing (ARC), Apr. 2015, pp.
451–460.

[37] T. Ajayi, V. A. Chhabria, M. Fogaca, S. Hashemi, A. Hosny, A. B.
Kahng, M. Kim, J. Lee, U. Mallappa, M. Neseem, F. Pradipta, S. Reda,
M. Saligane, S. S. Sapatnekar, C. Sechen, M. Shalan, W. Swartz,
L. Wang, Z. Wang, M. Woo, and B. Xu, “Toward an open-source digital
flow: First learnings from the openroad project,” in Proceedings of the
Design Automation Conference (DAC), 2019.

[38] Oliscience, “OpenCores repository,” Available at: https://opencores.org/.
[39] M. Püschel, F. Franchetti, and Y. Voronenko, Encyclopedia of Parallel

Computing. Springer, 2011, ch. Spiral.
[40] “KC2: Key-condition crunching for fast sequential circuit deobfusca-

tion,” in Proceedings of the Design, Automation & Test in Europe
Conference (DATE), 2019, pp. 534–539.

Christian Pilato is a Tenure-Track Assistant Pro-
fessor at Politecnico di Milano. He was a Post-doc
Research Scientist at Columbia University (2013-
2016) and Università della Svizzera italiana (2016-
2018). He was also a Visiting Researcher at New
York University, TU Delft, and Chalmers University
of Technology. He has a Ph.D. in Information Tech-
nology from Politecnico di Milano (2011). His re-
search interests include high-level synthesis, recon-
figurable systems and system-on-chip architectures,
with emphasis on memory and security aspects. He

served as program chair of EUC 2014 and is currently serving in the program
committees of many conferences on EDA, CAD, embedded systems, and
reconfigurable architectures (DAC, ICCAD, DATE, CASES, FPL, ICCD, etc.)
He is a Senior Member of IEEE and ACM, and a Member of HiPEAC.

Animesh Basak Chowdhury received his MS in
Computer Science from Indian Statistical Institute
in 2016. Currently, he is a doctoral candidate at
the NYU Centre for Cybersecurity. His research
interests include Secure Electronics Design Automa-
tion (EDA), machine learning and SoC security.
Prior to joining the Ph.D. program, he spent three
years as a researcher at Tata Research Development
and Design Centre (TRDDC), India, where he was
primarily working in the area of formal verification
and security testing. He has won several awards and

recognition in International Software Verification and Testing Competitions
(SV-COMP, TEST COMP, and RERS-Challenge).

Donatella Sciuto received the Laurea (Ms) in Elec-
tronic Engineering from Politecnico di Milano and
the PhD in Electrical and Computer Engineering
from the University of Colorado, Boulder, and the
MBA from Bocconi University. She is currently
the Executive Vice Rector of the Politecnico di
Milano and Full Professor in Computer Science and
Engineering. Her main research interests cover the
methodologies for the design of embedded systems
and multicore systems considering performance,
power and security metrics. More recently she has

been involved in managing and developing research projects in the area of
smart cities and in the application of new ICT technologies to different
application fields. She has published over 300 scientific papers. She is a
Fellow of IEEE for her contributions in embedded system design. She has
served as Vice-President of Finance and then President of the IEEE Council
of Electronic Design Automation from 2009 to 2013 and she serves in different
capacities in IEEE Awards Committees, in scientific boards of IEEE journals
and conferences.

Ramesh Karri is a Professor of ECE at
New York University. He co-directs the NYU
Center for Cyber Security (http://cyber.nyu.edu).
He founded the Embedded Systems Challenge
(https://csaw.engineering.nyu.edu/esc), the annual
red team blue team event. He co-founded Trust-
Hub (http://trust-hub.org). Ramesh Karri has a Ph.D.
in Computer Science and Engineering, from the
UC San Diego and a B.E in ECE from Andhra
University. His research and education activities
in hardware cybersecurity include trustworthy ICs;

processors and cyber-physical systems; security-aware computer-aided design,
test, verification, validation, and reliability; nano meets security; hardware
security competitions, benchmarks, and metrics; biochip security; additive
manufacturing security. He published over 250 articles in leading journals
and conference proceedings. Karri’s work on hardware cybersecurity received
best paper nominations (ICCD 2015 and DFTS 2015) and awards (ACM
TODAES 2018, ITC 2014, CCS 2013, DFTS 2013 and VLSI Design 2012).
He received the Humboldt Fellowship and the NSF CAREER Award. He is the
editor-in-chief of ACM JETC and serve(d)s on the editorial boards of IEEE
and ACM Transactions (TIFS, TCAD, TODAES, ESL, D&T, JETC). He was
an IEEE Computer Society Distinguished Visitor (2013-2015). He served on
the Executive Committee of the IEEE/ACM DAC leading the SecurityDAC
initiative (2014-2017). He served as program/general chair of conferences and
serves on program committees. He is a Fellow of the IEEE for leadership and
contributions to Trustworthy Hardware.

Siddharth Garg received his Ph.D. degree in Elec-
trical and Computer Engineering from Carnegie
Mellon University in 2009, and a B.Tech. degree in
Electrical Engineering from the Indian Institute of
Technology Madras. He joined NYU in Fall 2014
as an Assistant Professor, and prior to that, was an
Assistant Professor at the University of Waterloo
from 2010-2014. His general research interests are
in computer engineering, and more particularly in
secure, reliable and energy-efficient computing. In
2016, Siddharth was listed in Popular Science Mag-

azine’s annual list of ”Brilliant 10” researchers. Siddharth has received the
NSF CAREER Award (2015), and paper awards at the IEEE Symposium
on Security and Privacy (S&P) 2016, USENIX Security Symposium 2013,
at the Semiconductor Research Consortium TECHCON in 2010, and the
International Symposium on Quality in Electronic Design (ISQED) in 2009.
Siddharth also received the Angel G. Jordan Award from ECE department of
Carnegie Mellon University for outstanding thesis contributions and service
to the community. He serves on the technical program committee of several
top conferences in the area of computer engineering and computer hardware,
and has served as a reviewer for several IEEE and ACM journals.

http://cyber.nyu.edu
http://trust-hub.org

	I Introduction
	I-A Related Work
	I-B Paper Contributions

	II Threat Model: Untrusted Foundry
	III Overview of ASSURE
	III-A ASSURE Obfuscation Flow
	III-B ASSURE Obfuscations and Security Proofs
	III-B1 Constant Obfuscation
	III-B2 Operation Obfuscation
	III-B3 Branch Obfuscation

	IV Experimental Validation of ASSURE
	IV-A Experimental Setup
	IV-B Correctness and Key Effects
	IV-B1 Correctness
	IV-B2 Key Effect

	IV-C Resilience Against Locking Attacks
	IV-C1 Resynthesis Attacks
	IV-C2 ML-guided Attacks
	IV-C3 Redundancy and KC2 Attacks

	IV-D Synthesis Overhead
	IV-D1 Area overhead
	IV-D2 Timing overhead

	V Discussion and Concluding Remarks
	References
	Biographies
	Christian Pilato
	Animesh Basak Chowdhury
	Donatella Sciuto
	Ramesh Karri
	Siddharth Garg

