Industrial applications that involve working on and moving a heavy load or that constrain the operator to work in uncomfortable positions can take advantage of the assistance of a robotic assistant. In this paper, we propose an architecture for an ergonomic human–robot co-manipulation of objects of various shapes and weight. The object is carried by the robot and, thanks to an ergonomic planner, is positioned in the most comfortable way for the user. Furthermore, thanks to an admittance control with payload compensation, the user can easily adjust the position of the object for working on different parts of it. The proposed architecture is experimentally validated in a robotic cell including an ABB industrial robot.
A unified architecture for physical and ergonomic human–robot collaboration
VILLA, RENZO;A. M. ZANCHETTIN;P. ROCCO;
2020-01-01
Abstract
Industrial applications that involve working on and moving a heavy load or that constrain the operator to work in uncomfortable positions can take advantage of the assistance of a robotic assistant. In this paper, we propose an architecture for an ergonomic human–robot co-manipulation of objects of various shapes and weight. The object is carried by the robot and, thanks to an ergonomic planner, is positioned in the most comfortable way for the user. Furthermore, thanks to an admittance control with payload compensation, the user can easily adjust the position of the object for working on different parts of it. The proposed architecture is experimentally validated in a robotic cell including an ABB industrial robot.File | Dimensione | Formato | |
---|---|---|---|
Robotica_Ferraguti_et_al_2020.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.