Sfoglia per Autore  

Opzioni
Mostrati risultati da 1 a 18 di 18
Titolo Data di pubblicazione Autori File
Prediction of late radiotherapy toxicity in prostate cancer patients via joint analysis of SNPs sequences 1-gen-2020 Franco, Nicola RaresMassi, Michela CarlottaIeva, FrancescaPaganoni, Anna MariaManzoni, AndreaZunino, Paolo +
Deep Sparse Autoencoder-based Feature Selection for SNPs validation in Prostate Cancer Radiogenomics 1-gen-2020 M. C. MassiF. IevaA. PaganoniA. ManzoniP. ZuninoN. R. Franco +
A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort 1-gen-2020 Michela Carlotta MassiFrancesca IevaAnna Maria PaganoniPaolo ZuninoAndrea ManzoniNicola Rares Franco +
Interpretability and interaction learning for logistic regression models 1-gen-2021 N. R. FrancoM. C. MassiF. IevaA. M. Paganoni
Uncertainty Quantification for Parameter dependent Partial Differential Equations using Deep Neural Networks 1-gen-2021 N. FrancoA. ManzoniP. Zunino
PH-0656 Prediction of toxicity after prostate cancer RT: the value of a SNP-interaction polygenic risk score 1-gen-2021 Massi, M.Franco, N.Ieva, F.Manzoni, A.Paganoni, A.Zunino, P. +
Development of a method for generating SNP interaction-aware polygenic risk scores for radiotherapy toxicity 1-gen-2021 Franco, Nicola RaresMassi, Michela CarlottaIeva, FrancescaManzoni, AndreaPaganoni, Anna MariaZunino, Paolo +
Deep learning-based surrogate models for parametrized PDEs: Handling geometric variability through graph neural networks 1-gen-2023 Franco, Nicola RaresFresca, StefaniaTombari, FilippoManzoni, Andrea
Learning high-order interactions for polygenic risk prediction 1-gen-2023 Franco N. R.Manzoni A.Paganoni A. M.Ieva F.Zunino P. +
Approximation bounds for convolutional neural networks in operator learning 1-gen-2023 Franco, Nicola RaresFresca, StefaniaManzoni, AndreaZunino, Paolo
Mesh-Informed Neural Networks for Operator Learning in Finite Element Spaces 1-gen-2023 Franco N. R.Manzoni A.Zunino P.
A deep learning approach to Reduced Order Modelling of parameter dependent partial differential equations 1-gen-2023 Franco, NicolaManzoni, AndreaZunino, Paolo
Nonlinear model order reduction for problems with microstructure using mesh informed neural networks 1-gen-2024 Vitullo, PColombo, AFranco, NRManzoni, AZunino, P
Deep learning enhanced cost-aware multi-fidelity uncertainty quantification of a computational model for radiotherapy 1-gen-2024 Vitullo, PiermarioFranco, Nicola RaresZunino, Paolo
Error estimates for POD-DL-ROMs: a deep learning framework for reduced order modeling of nonlinear parametrized PDEs enhanced by proper orthogonal decomposition 1-gen-2024 Brivio, SimoneFresca, StefaniaFranco, Nicola RaresManzoni, Andrea
On the latent dimension of deep autoencoders for reduced order modeling of PDEs parametrized by random fields 1-gen-2024 Franco, Nicola RaresFraulin, DanielManzoni, AndreaZunino, Paolo
A practical existence theorem for reduced order models based on convolutional autoencoders 1-gen-2024 Franco, Nicola RaresBrugiapaglia, Simone
Neural network solvers for parametrized elasticity problems that conserve linear and angular momentum 1-gen-2025 Boon, Wietse M.Franco, Nicola R.Fumagalli, Alessio
Mostrati risultati da 1 a 18 di 18
Legenda icone

  •  file ad accesso aperto
  •  file disponibili sulla rete interna
  •  file disponibili agli utenti autorizzati
  •  file disponibili solo agli amministratori
  •  file sotto embargo
  •  nessun file disponibile