Many applications in computational physics involve approximating problems with microstructure, characterized by multiple spatial scales in their data. However, these numerical solutions are often computationally expensive due to the need to capture fine details at small scales. As a result, simulating such phenomena becomes unaffordable for many-query applications, such as parametrized systems with multiple scale-dependent features. Traditional projection based reduced order models (ROMs) fail to resolve these issues, even for second-order elliptic PDEs commonly found in engineering applications. To address this, we propose an alternative nonintrusive strategy to build a ROM, that combines classical proper orthogonal decomposition (POD) with a suitable neural network (NN) model to account for the small scales. Specifically, we employ sparse mesh-informed neural networks (MINNs), which handle both spatial dependencies in the solutions and model parameters simultaneously. We evaluate the performance of this strategy on benchmark problems and then apply it to approximate a real-life problem involving the impact of microcirculation in transport phenomena through the tissue microenvironment.

Nonlinear model order reduction for problems with microstructure using mesh informed neural networks

Vitullo, P;Colombo, A;Franco, NR;Manzoni, A;Zunino, P
2024-01-01

Abstract

Many applications in computational physics involve approximating problems with microstructure, characterized by multiple spatial scales in their data. However, these numerical solutions are often computationally expensive due to the need to capture fine details at small scales. As a result, simulating such phenomena becomes unaffordable for many-query applications, such as parametrized systems with multiple scale-dependent features. Traditional projection based reduced order models (ROMs) fail to resolve these issues, even for second-order elliptic PDEs commonly found in engineering applications. To address this, we propose an alternative nonintrusive strategy to build a ROM, that combines classical proper orthogonal decomposition (POD) with a suitable neural network (NN) model to account for the small scales. Specifically, we employ sparse mesh-informed neural networks (MINNs), which handle both spatial dependencies in the solutions and model parameters simultaneously. We evaluate the performance of this strategy on benchmark problems and then apply it to approximate a real-life problem involving the impact of microcirculation in transport phenomena through the tissue microenvironment.
2024
Reduced order modeling
Finite element approximation
Neural networks
Deep learning
Embedded microstructure
Microcirculation
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0168874X23001610-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1257777
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact