To perform many common industrial robotic tasks, e.g. deburring a work-piece, in small and medium size companies where a model of the work-piece may not be available, building a geometrical model of how to perform the task from a data set of human demonstrations is highly demanded. In many cases, however, the human demonstrations may be sub-optimal and noisy solutions to the problem of performing a task. For example, an expert may not completely remove the burrs that result in deburring residuals on the work-piece. Hence, we present an iterative algorithm to estimate a noise-free geometrical model of a work-piece from a given dataset of profiles with deburring residuals. In a case study, we compare the profiles obtained with the proposed method, nonlinear principal component analysis and Gaussian mixture model/Gaussian mixture regression. The comparison illustrates the effectiveness of the proposed method, in terms of accuracy, to compute a noise-free profile model of a task.
Estimating a mean-path from a set of 2-D curves
BASCETTA, LUCA;RESTELLI, MARCELLO;ROCCO, PAOLO
2015-01-01
Abstract
To perform many common industrial robotic tasks, e.g. deburring a work-piece, in small and medium size companies where a model of the work-piece may not be available, building a geometrical model of how to perform the task from a data set of human demonstrations is highly demanded. In many cases, however, the human demonstrations may be sub-optimal and noisy solutions to the problem of performing a task. For example, an expert may not completely remove the burrs that result in deburring residuals on the work-piece. Hence, we present an iterative algorithm to estimate a noise-free geometrical model of a work-piece from a given dataset of profiles with deburring residuals. In a case study, we compare the profiles obtained with the proposed method, nonlinear principal component analysis and Gaussian mixture model/Gaussian mixture regression. The comparison illustrates the effectiveness of the proposed method, in terms of accuracy, to compute a noise-free profile model of a task.File | Dimensione | Formato | |
---|---|---|---|
ICRA2015_reprint.pdf
Accesso riservato
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.21 MB
Formato
Adobe PDF
|
2.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.