This paper presents a novel approach to functional fault diagnosis adopting data mining to exploit knowledge extracted from the system model. Such knowledge puts into relation test outcomes with components failures, to define an incremental strategy for identifying the candidate faulty component. The diagnosis procedure is built upon a set of sorted, possibly approximate, rules that specify given a (set of) failing test, which is the faulty candidate. The procedure iterative selects the most promising rules and requests the execution of the corresponding tests, until a component is identified as faulty, or no diagnosis can be performed. The proposed approach aims at limiting the number of tests to be executed in order to reduce the time and cost of diagnosis. Results on a set of examples show that the proposed approach allows for a significant reduction of the number of executed tests (the average improvement ranges from 32% to 88%).

A data mining approach to incremental adaptive functional diagnosis

BOLCHINI, CRISTIANA;QUINTARELLI, ELISA;SALICE, FABIO;
2013

Abstract

This paper presents a novel approach to functional fault diagnosis adopting data mining to exploit knowledge extracted from the system model. Such knowledge puts into relation test outcomes with components failures, to define an incremental strategy for identifying the candidate faulty component. The diagnosis procedure is built upon a set of sorted, possibly approximate, rules that specify given a (set of) failing test, which is the faulty candidate. The procedure iterative selects the most promising rules and requests the execution of the corresponding tests, until a component is identified as faulty, or no diagnosis can be performed. The proposed approach aims at limiting the number of tests to be executed in order to reduce the time and cost of diagnosis. Results on a set of examples show that the proposed approach allows for a significant reduction of the number of executed tests (the average improvement ranges from 32% to 88%).
Proc. IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFTS)
9781479915835
9781479915859
File in questo prodotto:
File Dimensione Formato  
dft2013b.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 179.18 kB
Formato Adobe PDF
179.18 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/760679
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact