An analytical method is presented to evaluate the field and global quantities for the operation and design analysis of axial flux permanent- magnet (PM) machines. The method, of general applicability, is based on the definition and superposition of suited field functions, able to accurately model the different singularities of the studied device: PM field distribution, effects of slotting, and radial end effects. Selected explorative FEM analyses are used in order to investigate the field functions shape and to help in identifying their structure and parameters. Then, the flux density distribution is obtained, as a function of the rotor position, taking into account some manufacture dissymmetry effects, such as air-gap offsets and PM rotor disk inclinations. This approach allows to analyze the effect of dissymmetry on the circulation of current among winding parallel paths in no-load operation. Moreover, by using theMaxwell stress tensor, the stress distribution is evaluated, as well as the resultant axial forces and the bending torques on the shaft due to the rotor disk tilts. Several FEM simulations show the soundness of the proposed method, which exhibits high accuracy and great evaluation speed.

Evaluation of Manufacturing Dissymmetry Effects in Axial Flux Permanent-Magnet Machines: Analysis Method Based on Field Functions

DI GERLANDO, ANTONINO;FOGLIA, GIOVANNI MARIA;IACCHETTI, MATTEO FELICE;PERINI, ROBERTO
2011-01-01

Abstract

An analytical method is presented to evaluate the field and global quantities for the operation and design analysis of axial flux permanent- magnet (PM) machines. The method, of general applicability, is based on the definition and superposition of suited field functions, able to accurately model the different singularities of the studied device: PM field distribution, effects of slotting, and radial end effects. Selected explorative FEM analyses are used in order to investigate the field functions shape and to help in identifying their structure and parameters. Then, the flux density distribution is obtained, as a function of the rotor position, taking into account some manufacture dissymmetry effects, such as air-gap offsets and PM rotor disk inclinations. This approach allows to analyze the effect of dissymmetry on the circulation of current among winding parallel paths in no-load operation. Moreover, by using theMaxwell stress tensor, the stress distribution is evaluated, as well as the resultant axial forces and the bending torques on the shaft due to the rotor disk tilts. Several FEM simulations show the soundness of the proposed method, which exhibits high accuracy and great evaluation speed.
2011
File in questo prodotto:
File Dimensione Formato  
Evaluation of Manufacturing Dissymmetry Effects in AFPM Machines - Analysis Method Based on Field Functions.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/661981
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 24
social impact