Some recent works on natural language semantic parsing make use of syntax and semantics together using different combination models. In our work we attempt to use SPARQL-DL as an interface between syntactic information given by the Stanford statistical parser (namely part-of-speech tagged text and typed dependency representation) and semantic information obtained from the FrameNet database. We use SPARQL-DL queries to check the presence of syntactic patterns within a sentence and identify their role as frame elements. The choice of SPARQL-DL is due to its usage as a common reference language for semantic applications and its high expressivity, which let rules to be generalized exploiting the inference capabilities of the underlying reasoner.
Semanticizing syntactic patterns in NLP processing using SPARQL-DL queries
VITUCCI, NICOLA;ARRIGONI NERI, MARIO;TEDESCO, ROBERTO;GINI, GIUSEPPINA
2012-01-01
Abstract
Some recent works on natural language semantic parsing make use of syntax and semantics together using different combination models. In our work we attempt to use SPARQL-DL as an interface between syntactic information given by the Stanford statistical parser (namely part-of-speech tagged text and typed dependency representation) and semantic information obtained from the FrameNet database. We use SPARQL-DL queries to check the presence of syntactic patterns within a sentence and identify their role as frame elements. The choice of SPARQL-DL is due to its usage as a common reference language for semantic applications and its high expressivity, which let rules to be generalized exploiting the inference capabilities of the underlying reasoner.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.