Except for MEMS working in ultra high vacuum, the main cause of damping is the air surrounding the system. When the working pressure is equal to the atmospheric one (from now on called "high pressure", i.e. 105Pa), the mean free path of an air molecule is much smaller than typical MEMS dimensions. Thus, air can be considered as a viscous fluid and two phenomena occur: flow damping and squeeze film damping. These two terms can be evaluated through a simplified Navies-Stocks equation. In vacuum (from now on called "low pressure", i.e. 26Pa), the air cannot be considered as a viscous fluid any more since the free path of an air molecule is of the same order of magnitude of typical MEMS dimensions. Thus, the molecular fluid theory must be used to estimate the damping. To predict the damping of a MEMS device both at high and low pressure levels, a multi-physics code was used and the achieved numerical results were compared to experimental data measured on the same device

Modelling of Air Damping in MEMS Inertial Sensors Comparison Between Numerical and Experimental Results

BRAGHIN, FRANCESCO;LEO, ELISABETTA;RESTA, FERRUCCIO
2006-01-01

Abstract

Except for MEMS working in ultra high vacuum, the main cause of damping is the air surrounding the system. When the working pressure is equal to the atmospheric one (from now on called "high pressure", i.e. 105Pa), the mean free path of an air molecule is much smaller than typical MEMS dimensions. Thus, air can be considered as a viscous fluid and two phenomena occur: flow damping and squeeze film damping. These two terms can be evaluated through a simplified Navies-Stocks equation. In vacuum (from now on called "low pressure", i.e. 26Pa), the air cannot be considered as a viscous fluid any more since the free path of an air molecule is of the same order of magnitude of typical MEMS dimensions. Thus, the molecular fluid theory must be used to estimate the damping. To predict the damping of a MEMS device both at high and low pressure levels, a multi-physics code was used and the achieved numerical results were compared to experimental data measured on the same device
2006
7th International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE 2006
9781424402755
Atmospheric pressure, Damping, Molecular dynamics, Navier Stokes equations, Ultrahigh vacuum, Viscous flow; Air molecule, Flow damping, Multi-physics code, Working pressure; Microelectromechanical devices
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/542688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact