We describe BayesMix, a C++ library for MCMC posterior simulation for general Bayesian mixture models. The goal of BayesMix is to provide a self-contained ecosystem to perform inference for mixture models to computer scientists, statisticians and practitioners. The key idea of this library is extensibility, as we wish the users to easily adapt our software to their specific Bayesian mixture models. In addition to the several models and MCMC algorithms for posterior inference included in the library, new users with little familiarity on mixture models and the related MCMC algorithms can extend our library with minimal coding effort. Our library is computationally very efficient when compared to competitor software. Examples show that the typical code runtimes are from two to 25 times faster than competitors for data dimension from one to ten. We also provide Python (bayesmixpy) and R (bayesmixr) interfaces. Our library is publicly available on GitHub at https://github.com/bayesmix-dev/bayesmix/.

BayesMix: Bayesian Mixture Models in C++

Beraha, Mario;Guindani, Bruno;Gianella, Matteo;Guglielmi, Alessandra
2025-01-01

Abstract

We describe BayesMix, a C++ library for MCMC posterior simulation for general Bayesian mixture models. The goal of BayesMix is to provide a self-contained ecosystem to perform inference for mixture models to computer scientists, statisticians and practitioners. The key idea of this library is extensibility, as we wish the users to easily adapt our software to their specific Bayesian mixture models. In addition to the several models and MCMC algorithms for posterior inference included in the library, new users with little familiarity on mixture models and the related MCMC algorithms can extend our library with minimal coding effort. Our library is computationally very efficient when compared to competitor software. Examples show that the typical code runtimes are from two to 25 times faster than competitors for data dimension from one to ten. We also provide Python (bayesmixpy) and R (bayesmixr) interfaces. Our library is publicly available on GitHub at https://github.com/bayesmix-dev/bayesmix/.
2025
model-based clustering
density estimation
MCMC
object oriented programming
C++
modularity
extensibility
File in questo prodotto:
File Dimensione Formato  
v112i09.pdf

accesso aperto

Descrizione: Articolo
: Publisher’s version
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1289251
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact