Endovascular interventions are minimally invasive procedures that utilize the vascular system to access anatomical regions deep within the body. Image-guided assistance provides valuable real-time information about the dynamic state of the vascular environment. However, the reliance on intraoperative 2-D fluoroscopy images limits depth perception, prompting the demand for intraoperative 3-D imaging. Existing image registration methods face difficulties in accurately incorporating tissue deformations compared to the preoperative 3-D model, particularly in a weakly supervised manner. Additionally, reconstructing deformations from 2-D to 3-D space and presenting this intraoperative model visually to clinicians poses further complexities. To address these challenges, this study introduces a novel deformable model-to-image registration framework using deep learning. Furthermore, this research proposes a visualization method through augmented reality to guide endovascular interventions. This study utilized image data collected from nine patients who underwent transcatheter aortic valve implantation (TAVI) procedures. The registration results in 2-D indicate that the proposed deformable model-to-image registration framework achieves a modified dice similarity coefficient (MDSC) value of 0.89 +/- 0.02 and a penalization of deformations in spare space (PDSS) value of 0.04 +/- 0.01 , offering an improvement of 3.5%-98.6% over the state-of-the-art image registration approach. Additionally, the accuracy of registration in 3-D was evaluated using a dataset obtained from an intervention simulator, resulting in a mean absolute error (MAE) of 1.51 +/- 1.02 mm within the region of interest. Overall, the study validates the feasibility and accuracy of the proposed weakly supervised deformable model-to-image registration framework, demonstrating its potential to provide intraoperative 3-D imaging as intervention assistance in dynamic vascular environments.

Deformable Model-to-Image Registration Toward Augmented Reality-Guided Endovascular Interventions

Li, Zhen;De Momi, Elena
2024-01-01

Abstract

Endovascular interventions are minimally invasive procedures that utilize the vascular system to access anatomical regions deep within the body. Image-guided assistance provides valuable real-time information about the dynamic state of the vascular environment. However, the reliance on intraoperative 2-D fluoroscopy images limits depth perception, prompting the demand for intraoperative 3-D imaging. Existing image registration methods face difficulties in accurately incorporating tissue deformations compared to the preoperative 3-D model, particularly in a weakly supervised manner. Additionally, reconstructing deformations from 2-D to 3-D space and presenting this intraoperative model visually to clinicians poses further complexities. To address these challenges, this study introduces a novel deformable model-to-image registration framework using deep learning. Furthermore, this research proposes a visualization method through augmented reality to guide endovascular interventions. This study utilized image data collected from nine patients who underwent transcatheter aortic valve implantation (TAVI) procedures. The registration results in 2-D indicate that the proposed deformable model-to-image registration framework achieves a modified dice similarity coefficient (MDSC) value of 0.89 +/- 0.02 and a penalization of deformations in spare space (PDSS) value of 0.04 +/- 0.01 , offering an improvement of 3.5%-98.6% over the state-of-the-art image registration approach. Additionally, the accuracy of registration in 3-D was evaluated using a dataset obtained from an intervention simulator, resulting in a mean absolute error (MAE) of 1.51 +/- 1.02 mm within the region of interest. Overall, the study validates the feasibility and accuracy of the proposed weakly supervised deformable model-to-image registration framework, demonstrating its potential to provide intraoperative 3-D imaging as intervention assistance in dynamic vascular environments.
2024
Augmented reality
deep learning
deformation
image registration
image-guided interventions
File in questo prodotto:
File Dimensione Formato  
Deformable_Model-to-Image_Registration_Toward_Augmented_Reality-Guided_Endovascular_Interventions.pdf

accesso aperto

: Publisher’s version
Dimensione 3.69 MB
Formato Adobe PDF
3.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1276446
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact