In conceptual design studies engineers typically utilize data-based surrogate models to enable rapid evaluation of design objectives that otherwise would be too computationally expensive and time-consuming to simulate. Due to the computationally expensive simulations, the data-based surrogate models are often trained using small sample sizes, resulting in low-fidelity models which can produce results that are not trustworthy. To mitigate this issue, a similarity-assisted design space exploration method is proposed. The similarity is measured between design points that have been evaluated through lower-fidelity data-based surrogate models and design points that have been evaluated using higher-fidelity physics-based simulations. This similarity information can then be used by design engineers to better understand the trustworthiness of the data produced by the low-fidelity surrogate models. Our numerical experiments demonstrate that such a similarity measurement can be used as an indicator of the trustworthiness of the lower-fidelity model predictions. Moreover, a second similarity metric is proposed for measuring the similarity of new designs to legacy designs, thus highlighting the potential to reuse knowledge, analysis models, and data. The proposed method is demonstrated by means of an aero-engine structural component conceptual design study. An open-source software tool developed to assist in data visualization is also presented.
A similarity-assisted multi-fidelity approach to conceptual design space exploration
Panarotto M.;
2023-01-01
Abstract
In conceptual design studies engineers typically utilize data-based surrogate models to enable rapid evaluation of design objectives that otherwise would be too computationally expensive and time-consuming to simulate. Due to the computationally expensive simulations, the data-based surrogate models are often trained using small sample sizes, resulting in low-fidelity models which can produce results that are not trustworthy. To mitigate this issue, a similarity-assisted design space exploration method is proposed. The similarity is measured between design points that have been evaluated through lower-fidelity data-based surrogate models and design points that have been evaluated using higher-fidelity physics-based simulations. This similarity information can then be used by design engineers to better understand the trustworthiness of the data produced by the low-fidelity surrogate models. Our numerical experiments demonstrate that such a similarity measurement can be used as an indicator of the trustworthiness of the lower-fidelity model predictions. Moreover, a second similarity metric is proposed for measuring the similarity of new designs to legacy designs, thus highlighting the potential to reuse knowledge, analysis models, and data. The proposed method is demonstrated by means of an aero-engine structural component conceptual design study. An open-source software tool developed to assist in data visualization is also presented.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0166361523001070-main.pdf
accesso aperto
:
Publisher’s version
Dimensione
2.81 MB
Formato
Adobe PDF
|
2.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.