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A B S T R A C T

In conceptual design studies engineers typically utilize data-based surrogate models to enable rapid evaluation
of design objectives that otherwise would be too computationally expensive and time-consuming to simulate.
Due to the computationally expensive simulations, the data-based surrogate models are often trained using
small sample sizes, resulting in low-fidelity models which can produce results that are not trustworthy. To
mitigate this issue, a similarity-assisted design space exploration method is proposed. The similarity is measured
between design points that have been evaluated through lower-fidelity data-based surrogate models and design
points that have been evaluated using higher-fidelity physics-based simulations. This similarity information
can then be used by design engineers to better understand the trustworthiness of the data produced by the
low-fidelity surrogate models. Our numerical experiments demonstrate that such a similarity measurement
can be used as an indicator of the trustworthiness of the lower-fidelity model predictions. Moreover, a second
similarity metric is proposed for measuring the similarity of new designs to legacy designs, thus highlighting
the potential to reuse knowledge, analysis models, and data. The proposed method is demonstrated by means
of an aero-engine structural component conceptual design study. An open-source software tool developed to
assist in data visualization is also presented.
1. Introduction

When exploring conceptual design spaces that are large and high-
dimensional, Aerospace design engineers often rely on data-based sur-
rogate models of a low fidelity. This is because models of a higher
fidelity, such as finite element method simulations, are either not avail-
able or computationally expensive, which hinders rapid assessment of
a large number of design points. In the latter case, Aerospace design
engineers often resort to low-fidelity surrogate models built using data
obtained by high-fidelity simulations with a relatively low number
of sample points of the design space (Martins and Ning, 2021). The
predictive capability of surrogate models can theoretically be improved
by increasing the sample size. However, this is often impossible due
to restrictive computational budgets and time-constrained project sit-
uations. Hence, the problem addressed in this paper is that design
engineers commonly utilize underperforming surrogate models without
any feedback on data trustworthiness.

In this paper, we propose a method that utilizes similarity met-
rics (Lin, 1998) for indicating whether low-fidelity predictions can be
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trusted in a specific design context. Of particular interest are high-
dimensional surrogate models that have been built using a relatively
small number of samples, as such setups are prone to encountering the
phenomenon often referred to as the curse of dimensionality. This essen-
tially means the samples needed to train a surrogate model increases
exponentially with the dimensionality of the model (Wang and Shan,
2006; Keogh and Mueen, 2011). A sample size that is too small, with
respect to the dimensionality, will thus result in a low surrogate model
prediction accuracy.

In addition to using similarity metrics to assess the trustworthiness
of surrogate model predictions an additional metric is proposed to
identify similarities to already existing designs. The ability to identify
and leverage similarities to existing or legacy products can be especially
useful within the aircraft engine manufacturing business. When design-
ing structural components for aircraft jet engines, the trade-off between
functional performance and cost of realization is critical already in the
early design phase. This is because such trade-off analysis requires in-
depth knowledge about the concept definition and behavior. Structural
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aero-engine components are subject to harsh operative environments,
and the weight of such components need to be minimal to reduce fuel
consumption. This leads to advanced geometry optimization, which can
consequently result in structures that are expensive to manufacture. To
evaluate these aspects requires detailed designs, but such designs does
typically not yet exist during the early design phase. Thus, there is a
need to learn from existing designs, which similarity measurements can
assist in addressing.

Furthermore, similarity to existing designs can be a problem as
existing designs may be unnecessarily expensive and problematic to
produce. Consider a scenario where a legacy product encountered
technical issues during manufacturing, which caused late expensive
redesigns. Any measured similarities to this historically problematic
product can prompt the designers to reconsider their designs, to avoid
repeating past issues. In other words, measuring the similarities to
existing and legacy designs, as is done in the proposed method, can
not only be used to identify ‘‘useful’’ similarities, but also similarities
that should be avoided.

In the aircraft engine manufacturing business, a Technology Readi-
ness Level (TRL) of 6 is often considered as necessary to start com-
mercial product development. Conceptual work implies that known
design solutions that have been used in flight (that is, have a TRL
of 7 or higher) are considered mature and of low risk (Niemeyer
and Whitney, 2002). However, by definition the assessed TRL of any
product reduces the more the target context differs from the existing
one. Nergrd and Larsson (2009) proposed to use previous designs, and
knowledge gained from analysis models, to judge the quality of a TRL
assessment of new designs and technologies. Thus, how similar the low-
risk ‘‘proven in flight’’ solutions are compared to the product to be
designed needs to be understood.

The aim of this study is thus to address two opportunities: (1) How
similarity metrics can be used to mitigate issues typically encountered
when utilizing surrogate models based on limited sample sizes, and (2)
How similarity metrics can be used to highlight similarities to existing
design solutions with a high degree of maturity, providing an indication
of potentials for reuse of data, analysis models, and knowledge. The
intended effect of addressing these opportunities is to reduce the time
allocated to high-fidelity simulations, and to improve the efficiency of
identifying promising design configurations.

In Section 2 the relevant theoretical background is summarized.
Section 3 contains a detailed description of the proposed method. In
Section 4 the results of an experiment conducted to verify the utility of
the method are presented, along with an application of the proposed
method to a case from the Aerospace industry. Additionally, to enable
demonstrating the method fully, an open source software tool has
been developed (Martinsson Bonde, 2023) to assist in measuring and
visualizing similarities in design studies.

2. Theoretical background

It is common practice for design engineers to assess alternatives
in the early phases of the design process by means of low-fidelity
multidisciplinary analysis models. Typically, design engineers are not
concerned about this fidelity compromise; they tolerate and address
it in further studies of increasing detail and fidelity downstream the
design process. Nevertheless, having a means to provide some sense
of confidence in analysis results can be of tremendous help to design
engineers while they are navigating vast design spaces with dispro-
portionately available information. We propose a method that utilizes
similarity metrics to enhance the confidence of design engineers in
the above mentioned task. The literature in multi-fidelity modeling,
multidisciplinary analysis (and optimization), and similarity metrics
is vast; a detailed review would be out of the scope of this paper.
Therefore, we review here the principles and methods that are directly
relevant to our work.
2

2.1. Multidisciplinary assessment in design space exploration

Woodbury and Burrow (2006) define design space exploration as
the computational assessment of relatively large quantities of points in
the design space. How the designs are represented can vary; a common
means of representation is through CAD-models that can be generated
automatically. This was exemplified by Sandberg et al. (2017) who
evaluated aero-engine design concept variations via the generation of
solid CAD model representations.

When assessing different design concepts, it is often necessary to
consider their performance in different disciplines. When developing
an aero-engine structure, the final geometry needs to be aerodynamic,
structurally sound, of low weight, and manufacturable. To cater to such
varying and often conflicting needs, simulations can be used to generate
data, which can be visualized and analyzed by cross-functional teams
during design space exploration. Wall et al. (2020) demonstrated such
a working procedure in their ‘‘decision arena’’, within which cross-
functional teams make joint-decisions based on the visualization of
multidisciplinary data.

In addition to data from simulations, experienced engineers often
leverage knowledge gained through previous projects when making
decisions regarding new designs (Smith and Duffy, 2001). For instance,
a process engineer may be consulted about the manufacturability of a
new design concept, in which case that engineer draws parallels to al-
ready manufactured products. If there are enough similarities between
a new and an old design, analysis models may be reused in some
cases (Nergrd and Larsson, 2009), thus reducing computational cost
and time. For instance, Runnemalm et al. (2009) automated the process
of setting up weld simulations for structural aero-engine components,
which was made possible by the components’ proximity in the design
space. As suggested by Woodbury and Burrow (2006), exploring the
design space involves moving from known points to unknown ones; the
closer an unknown point is to a known point, the higher the likelihood
that the analysis of the former will yield results that are similar to the
ones of the latter.

Furthermore, contemporary trends of digitalization have led some
to suggest that data from existing products can be reused when evalu-
ating new designs (Cantamessa et al., 2020; Tao et al., 2019). However,
data from existing products are not necessarily relevant in the context
of a new design (Woodall, 2017). We argue that similarity metrics
may be useful for assessing the relevancy of data, analysis models, and
knowledge of existing products.

2.2. Similarity metrics in engineering design

Similarity metrics are useful in many disciplines. For example,
in computer science and machine learning similarity metrics have
been used in a multitude of problems, most notably for clustering
and classifying data (Xu and Wunsch, 2005). Other uses of similarity
metrics include spell-checking and plagiarism detection based on the
Levenshtein distance, which measures the similarity between two strings
of characters (Su et al., 2008). A more generalized similarity metric was
proposed by Li et al. (2004), who claimed that normalized compression
distance can be used to measure the similarity of two arbitrary digital
objects.

In engineering design, as mentioned earlier, similarities of a new
design concept to existing or legacy products can enable previous devel-
opment and manufacturing knowledge to be leveraged (Li et al., 2008).
Applying known design solutions in new contexts is referred to as
‘‘design reuse’’ (Sivaloganathan and Shahin, 1999), and can potentially
reduce cost and lead-times significantly (Duffy and Ferns, 1998). As a
result, methods that make use of design similarity to leverage design
reuse has emerged. Such is the case in Case-Based Reasoning (Aamodt
and Plaza, 1994) and Design-by-Analogy (McAdams and Wood, 2002);
they both assist in the selection of solutions to design problems through
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use of previous solutions. In doing so, design engineers need not
reinvent existing solutions.

Case-Based Reasoning is essentially a method used for solving new
problems by reusing knowledge and information from similar scenarios
that has already been resolved. Aamodt and Plaza (1994) describe Case-
Based Reasoning as a cyclical process: similar scenarios are retrieved
and used to revise a new solution, which in turn is retained for use
in future problem solving. To identify such similar scenarios similarity
metrics can be used. An example of this was proposed by Akmal et al.
(2014), who employed a feature-based similarity metric to augment a
Case-Based Reasoning approach.

Design-by-Analogy is a concept generation approach that utilizes
similarity. McAdams and Wood (2002) utilized similarity metrics to
calculate the functional similarity between a new concept and existing
designs. The purpose of the method is to assist design engineers in
identifying design solutions to particular functions when generating
new concepts. An alternative approach was suggested by Verhaegen
et al. (2011), who compared new concepts to existing designs found
in patent databases. In this highly automated process, candidates for
Design-by-Analogy were identified by calculating their similarity.

The methods covered above are to be used primarily for assisting
in the generation of new design concepts. Deploying them may enable
knowledge reuse and speed-up of development times. There are also
examples of similarity metrics being applied in the later stages of
product development. Lupinetti et al. (2019) applied similarity metrics
to compare assembly CAD models to enable knowledge reuse from
previous assemblies. Bickel et al. (2020) also compared CAD models,
looking at the geometrical similarity to previously produced parts as
a means to reduce production times. Li and Bernstein (2017) applied
similarity metrics to the process of identifying promising suppliers
through the comparison of manufacturing process similarity. This list
is by no means exhaustive; it is mentioned to highlight that similarity
metrics can also be used to improve decision-making for processes
that are downstream from design. Lupinetti et al. (2019) and Bickel
et al. (2020) suggest that information created during the design phase
(product geometry and assembly of CAD models) can be compared to
existing designs to draw conclusion regarding new designs that will
affect manufacturability. Arguably, if such similarities can be identi-
fied already during design space exploration, albeit with a reduced
certainty, then downstream issues can be prevented at the early stage,
thus preventing late redesigns.

Evidently, similarity metrics have multiple uses within the context
of engineering design. As laid out in the introduction, the method pro-
posed in this paper extends the use of similarity metrics in engineering
design when exploring new designs. One of the mechanisms of this
method is to identify similarities to existing designs, using a suitable
similarity metric, to highlight potentials for reuse. This differentiates
the proposed method from Design-by-Analogy, which primarily utilizes
functional similarity (Nandy et al., 2021) to identify design solutions
that have been used previously to achieve similar functions.

The use of other types of similarities, besides functional, enables its
use for product families where the functionality is the same but the
geometry is different. This is often the case for scale-based product
families (Simpson et al., 2001a), in which the products can possess
the same functionality but with varying dimensions. Furthermore, to
our knowledge, no previous attempts have been made to utilize design
similarity to augment design space exploration using surrogate models.

2.3. Early design evaluation through surrogate models

Surrogate models, sometimes referred to as ‘‘metamodels’’, are ap-
proximations of higher fidelity models. These can be used as surrogates
for otherwise computationally expensive models, such as finite element
simulations (Simpson et al., 2001b). When referring to ‘‘surrogate
3

models’’ in this paper, we exclusively refer to data-based surrogate
models: surrogate models that are based on data from higher-fidelity
simulations, physical measurements, or experiments.

Utilizing surrogate models has proven useful in engineering de-
sign, where optimization studies need to be conducted to find high-
performing design configurations (Papalambros and Wilde, 2017). Per-
forming optimization directly on simulation models is often impractical
due to computational expenses, and thus the objective function(s) can
be replaced with data-based surrogate models (Koziel et al., 2011). For
this purpose, multiple surrogate modeling approaches are available,
such as polynomial response surfaces, Gaussian processes, or neural
networks. However, what is gained in speed can be lost in accuracy.

The choice of surrogate model, and how to configure it, depends
on what needs to be predicted (Jin et al., 2001). At the same time
these factors, together with the sample size of the training dataset,
also impact the accuracy of the surrogate model. Typically, data from
models of a higher fidelity, such as simulations, or from physical
experiments, are used to ‘‘train’’ the surrogate model. However, such
processes are often too computationally expensive or time-consuming.
In such scenarios, only a few high-fidelity samples can be afforded to
train the surrogate model, which compromises its accuracy.

How to select a surrogate model and optimize it for maximum
accuracy is not within the scope of this paper. However, for the
interested reader, it should be noted that there are multiple existing
means for reducing computational cost while maintaining acceptable
surrogate model accuracy. Viana et al. (2021) conducted a review of
such techniques, categorizing them into four groups: (1) dimensionality
reduction techniques, (2) data sampling techniques, (3) techniques
for simultaneous use of multiple surrogate models, and (4) sequential
sampling techniques.

The first group of techniques focuses on the reduction of dimen-
sionality, which naturally has a direct impact on mitigating the curse
of dimensionality. A common way of achieving this is through variable
screening, which involves evaluating the impact each design variable
has on the output, and omitting those whose impact is negligible (Koch
et al., 1999). Moreover, several algorithms have been developed for the
specific purpose of identifying opportunities for reducing dimensional-
ity, that can be applied within engineering design. A recent example of
this is Bird et al. (2021), who demonstrated a technique for increasing
the accuracy of surrogate models used for predicting the properties of
jet engine fan-blades by utilizing dimensionality reduction algorithms.
In addition to minimizing the dimensionality of the problem, it is also
paramount that the training dataset covers the design space appropri-
ately. The second group of techniques focuses on experiment designs,
of which there is a vast selection. Simpson et al. (2001b) and Yondo
et al. (2018) both provide ample insight into this topic. The third group
of techniques involves the use of multiple surrogate models simulta-
neously, sometimes referred to as an ensemble (Goel et al., 2007).
The fourth and final group of techniques handles how the sampling
is sequenced. There are many ways in which the sequence of sampling
itself can be varied to improve accuracy. A technique that falls under
this category is multi-fidelity surrogate modeling, which essentially
involves mixing in a few samples of high-fidelity data with a larger
set of low-fidelity data when training the surrogate model (Fernández-
Godino et al., 2019). When adopting this approach, the high-fidelity
data typically has a greater influence relative to the low-fidelity data
when creating the surrogate model. The large number of low-fidelity
data points combined with the few prioritized high-fidelity data points
can thus yield increased accuracy.

The focus of this paper is on how to utilize similarity metrics to
evaluate the trustworthiness of surrogate model predictions, and to help
design engineers navigate the design space in search for interesting
design regions. To the authors’ knowledge this has not been previously

attempted.
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Fig. 1. The proposed method. The figure depicts a common design space exploration process derived trough consultancy with experts from a Swedish aero-engine components
manufacturer. Appended to the process are two additional steps: ‘‘calculate inter-similarity’’ and ‘‘calculate legacy similarity’’, that serve as the primary contribution of this research.
Additionally, two of the ‘‘visualize’’ activities are also highlighted as a contribution in the figure, as the method entails a degree of enrichment of traditional visualization through
the use of a prototype software tool.
3. Proposed method

In this section the proposed method is presented in detail. To make
the distinction easier a traditional design space exploration process is
presented first, without the use of similarities. In Fig. 1, a typical design
study process is visualized, along with the contributions added by the
research presented in this paper. The baseline process includes all of the
steps except for the calculation of inter-similarity and legacy similarity.

3.1. The baseline design space exploration process

The baseline process typically begins with a set of design objectives
derived from customer requirements. These design objectives can for
instance be, for a structural component, to have a low weight and a
high stiffness. The engineers then initiate the design space exploration
process by defining which design variables need to be explored, and
within what ranges. Which variables are considered in the design space
exploration process depends on what the objective of the exploration is.
Based on these definitions and ranges a Design of Experiments (DoE) is
initiated, spanning the design space region of interest. Each point in this
DoE is thus a design point to be evaluated. These design points are then
used to generate context models, such as CAD models and finite element
meshes. These models are used for various kinds of design analysis.
What kinds of analysis are performed depends on the design objectives.
If there is a need to create a lightweight product, then the volume
and mass need to be calculated. If there is a need for the product to
withstand certain mechanical loads, then a load case simulation can be
performed.

With the analysis completed, the results are aggregated and coupled
with their corresponding design points that were used as input. At
this point the design engineers may choose to inspect the results and
potentially go back and make adjustments to the initial conditions of
4

the design study. Otherwise, the simulation results are coupled with
the simulation input (the design variable values), and used to train
surrogate models. This enables the prediction of design analysis results
without the need for running computationally expensive simulations.

The surrogate models enables optimization to be conducted to
identify trade-offs and high performing regions in the design space. The
objective functions are evaluated to a degree that would be too compu-
tationally expensive for simulations. Instead, the surrogate models are
used as objective functions, which produces a set of low-fidelity data.
By visualizing this data, engineers can analyze the results and make
the decision to either proceed with a set of design points that look
promising, or to go back and redefine the initial design space region
of interest, thus continuing the exploration process.

3.2. Proposed additions to design space exploration

In the proposed method, three changes are suggested to the previ-
ously described design space exploration process: (1) A stage where the
similarities between design points evaluated using surrogate models,
and their closest simulated neighbors are calculated. This is referred
to as inter-similarity. (2) A stage where the similarities between both
the surrogate model and simulation design points, and legacy design
points are calculated. This is referred to as legacy similarity. (3) En-
hanced visualization steps in which information of these similarities is
superimposed on the traditional means of visualization, thus providing
the design engineers an extra layer of decision support.

Inter-similarity
Through the baseline design space exploration process depicted in

Fig. 1 two types of results are obtained. The first type of results are
obtained by means of high-fidelity simulations (step 5a). The second
type of results are the predictions of the surrogate models during the
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Fig. 2. Visualization of how inter-similarity is measured in a 2-dimensional design
pace. Inter-similarity only considers the distance to the closest simulated neighbor in
he design space. A shorter dashed line represents a higher similarity.

ptimization process (step 7 and 8a). Thus there are design points that
ave been evaluated using low-fidelity surrogate models and design
oints that have been evaluated through higher-fidelity simulations.
nter-similarity is defined as the distance in design space between a
esign point evaluated using a low-fidelity analysis (such as a surrogate
odel trained using higher-fidelity simulation data) to its closest neigh-

or evaluated at a higher fidelity (such as a physics-based simulation).
his principle has been visualized in Fig. 2, and can also be formu-

ated mathematically: Assume there exist 𝑛 design points evaluated
using high-fidelity analysis, and a function 𝑆(𝐱a, 𝐱b) that evaluates the
similarity between two multidimensional design points, producing a
lower value for a closer resemblance. The inter-similarity 𝑠i of a design
point evaluated using low-fidelity analysis 𝐱lf can be calculated using
the expression described in Eq. (1), where 𝐱𝑖 represents a design point
evaluated through high-fidelity analysis.

𝑠i = min
{

𝑆(𝐱lf, 𝐱1), 𝑆(𝐱lf, 𝐱2), ..., 𝑆(𝐱lf, 𝐱𝑛)
}

(1)

As reflected in Eq. (1), the similarity between all design points
evaluated using surrogate models are compared to all design points
evaluated through simulations. The closest identified similarity value
is used as the inter-similarity score. Depending on what type of metric
is used to calculate the inter-similarity, a higher score can either mean a
high or low inter-similarity. Thus, how to interpret the inter-similarity
score depends on the metric. To be consistent, a high inter-similarity
will always mean that the design points are close in the design space,
regardless of the similarity metric. Measuring the inter-similarity of
a design point evaluated through surrogate models can have three
potential benefits:

• If the inter-similarity is high in a certain design space region, then
that indicates a high coverage of high-fidelity analysis in that
design space region. This means that the predictions are more
likely to be trustworthy. Additional simulations in this design
space region are thus unlikely to yield a significantly increased
surrogate model accuracy.

• If the inter-similarity is low, then trust in these predictions should
also be low for any designs within this design space region. Thus,
a lower inter-similarity can prompt the engineer to reconsider
the trustworthiness of such results, and to consider executing
additional simulations within this region of the design space, if
affordable.

• Finally, as the inter-similarity can assist in locating the closest
neighbor evaluated at a high fidelity, it can also help in un-
5

derstanding what differentiates a higher-performing design point
Table 1
Examples of similarity metrics that can be used for different
types of data.
Data type Similarity metric

Numeric Euclidean distance
Cosine similarity
Jaccard similarity coefficient

Text (short) Levenshtein distance
Text (long) Normalized compression distance
Object Normalized compression distance
Class Jaccard index

from one that performs slightly less. This information can improve
a designers understanding of the design space, and the effects of
individual design variables.

Legacy similarity
Legacy similarity is the similarity between design points in the

design study, and designs that have been evaluated in previous projects.
Naturally, this measurement is of a lower resolution than inter-
similarity, since cross-generational design points may not share as
many measurable similarity criteria. However, as previously estab-
lished, similarities to existing designs can be highly beneficial. Thus,
similarities of any magnitude could potentially be interesting to the
design engineers. Furthermore, in use-cases such as the development
of products within scale-based product families (Simpson et al., 2001a)
multiple key design variables can be common to all products within
the family, as products within the family are scaled up or down. Those
key design variables can be used to measure the similarity between two
products within a scale-based product family.

When calculating legacy similarity, both design points from the
simulated dataset and the surrogate dataset can be evaluated. It is then
calculated in a similar fashion as how inter-similarity is calculated: The
similarity of each design point that has been simulated or evaluated
through surrogate model, and legacy designs is calculated. The closest
similarity value is used as the legacy similarity score. Once again, how
the score is interpreted depends on the choice of similarity metric. To
be consistent, a high legacy similarity will always mean that the two
compared design points are close within the design space.

3.3. Similarity calculations

The similarity of two design points can be calculated in many
different ways, depending on what type of data characterizes a design
point and personal preference. Examples of similarity metrics that can
be employed are listed in Table 1.

Similarity metrics such as Cosine similarity, Euclidean distance or
the Jaccard similarity coefficient are well suited for numeric data, while
Jaccard index can be employed if the data contains classes. For short
texts, then the Levenshtein distance can be appropriate. If the data is
object based or consists of long texts, then normalized compression
distance can be used. In reality, these are only a few choices in an
ocean of alternatives. The choice of similarity metrics should be made
depending on the problem that needs to be solved, based on how well
the similarity metric performs in that specific context. For numeric
data, the three alternatives listed above are often chosen for their
simplicity.

Neither of the similarity metrics for numeric data listed above
accounts for that different features may have different value ranges.
To avoid skewing the results of the similarity calculations the data
thus first needs to be normalized. It should also be noted that different
metrics has different response characteristics. For instance, when using
Euclidean distance to measure similarity, then a score of 0 means that
the two compared design points are equal (the similarity is high when
the similarity score is low). On the other hand, if Jaccard similarity is
used then a similarity score of 1 would mean that the two design points

are equal (the similarity is high when the similarity score is high).
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Fig. 3. The left image, provided by GKN Aerospace Engine Systems, displays the
location of a Turbine Rear Structure (TRS) in a turbofan jet engine. The right image
is a 3D model of a TRS.

4. Applied similarity assisted design space exploration

In this section the proposed method presented in Section 3 is
demonstrated on a scenario from the Aerospace industry. In Section 4.1
the background to the scenario is presented. Before applying the pro-
posed method to a design space exploration scenario an experiment
was conducted to demonstrate that there is a correlation between
inter-similarity and surrogate model prediction error. How this ex-
periment was conducted, and what results it produced are presented
in Section 4.2. To assist in visualizing and presenting the similarity
data a software tool was developed. This tool is briefly described in
Section 4.3. In Section 4.4 the proposed method is exemplified in a
study of an aero-engine component. Finally, in Section 4.5 the results
are discussed.

4.1. Scenario background

The Turbine Rear Structure (TRS) is a static component located
behind the turbines of turbo-fan engines, as depicted in Fig. 3. It struc-
turally supports the rear shaft bearing housing, while also providing
mounting points such that the engine can be attached to the wing of
an aircraft. Additionally, the TRS assists in directing the exhaust flow
using guide vanes.

The TRS can be considered to be a product within a scale-based
product family as each TRS has geometric similarities, are built on a
common platform of knowledge, and are initially scaled up or down
to suit new customer requirements. This enables comparisons between
products within the product family through a set of common key design
variables. When designing a TRS there are multiple key design variables
that needs to be considered, including:

• The number of vanes, which impacts the stiffness of the struc-
ture, its weight, and the airflow.

• The vane lean angle, which can be adjusted to mitigate the
effects of thermal expansion.

• The inner and outer diameters of the TRS, adjusted based on
the size of the engine.

• The thicknesses of each surface, also impacting the stiffness of
the structure, and its weight.

In Fig. 4 some of the design variables and key components of the
TRS are visualized. Typically, the inner and outer flange diameters are
set as constraints, as these are interfaces to adjacent parts in the engine.
The inner and outer diameters are thus locked, as they are determined
on an engine system level by the original equipment manufacturer.
However, the number of vanes, their lean angle, and the thicknesses
of a large quantity of part regions are often varied when exploring
the design space. This results in a large design study dimensionality.
Meanwhile, generating the geometries and simulating the conditions
necessary to evaluate the design is computationally expensive. Conse-
quently, design engineers resolve to building surrogate models based
6

Fig. 4. Map of some of the key components and design variables of the TRS.

on a relatively small amount of simulated design points to aid in the
decision-making process.

In the example used in this chapter, 8 design variables are used to
determine the configuration of the TRS design: the number of vanes,
the vane lean angle, and 6 thickness regions. It should be noted that
these design variables control more than a single dimension on the
TRS. For instance, changing the vane count will directly impact the
length of the TRS (and thus also the length of the engine). Another
important interaction with the vane count is the vane width: the higher
the number of vanes, the lower the vane width. This is to ensure that
no matter the number of vanes the airflow through the TRS will remain
the same.

4.2. Experiment: Correlation study of similarity and surrogate model error

To investigate the potential of using inter-similarity as an indicator
of trust in prediction results, an experiment was conducted to evaluate
the correlation between inter-similarity and surrogate model prediction
error. Three factors likely to influence this correlation were considered,
based on what has previously been mentioned in this paper: (1) the
choice of surrogate model; (2) the choice of similarity metric; (3)
the sample size of the data set used to train the surrogate model.
The impact of sample size on surrogate model accuracy is a known
phenomenon, and will not be discussed in this paper. Additionally,
it is important to remember that the choice of surrogate model is
heavily dependent on what needs to be predicted. How to select an
appropriate type of surrogate model has been covered extensively in
literature (Simpson et al., 2001b; Yondo et al., 2018), and will not be
further investigated in this experiment.

Three types of surrogate models were investigated: A second- and
a third-degree polynomial response surface, and a Gaussian Process
with an Radial Basis Function (RBF) kernel. For similarity metrics the
normalized Euclidean distance and the Jaccard similarity coefficient
were tested. The Euclidean distance was normalized by first scaling all
input variables such that they spanned a range from 0 to 1, and then di-
viding the Euclidean distance by the square root of the dimensionality,
as described by Eq. (2). The Jaccard similarity coefficient, as defined
by Eq. (3), also utilized a normalized input. In these expressions, 𝐱a
and 𝐱b are two normalized design points between which the similarity
is measured, and k is the dimensionality of these design points.
√

∑𝑘
𝑖=1(𝐱a,𝑖 − 𝐱b,𝑖)2

√

𝑘
(2)

∑𝑘
𝑖=1 min{𝐱a,𝑖, 𝐱b,𝑖}

∑𝑘 (3)

𝑖=1 max{𝐱a,𝑖, 𝐱b,𝑖}
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Table 2
The TRS design variables and the boundaries used in the DoE for the
correlation study, and for the design space exploration example. Note
that the inner and outer diameters do not have a range as they are not
varied in this DoE.
Design variable Range Unit Symbol

Diameter outer 1100 mm 𝐷o
Diameter inner 420 mm 𝐷i
Vane count [8, 18] N/A 𝑁
Vane lean angle [0, 20] ◦ 𝛼
Hub thickness (reg) [1.5, 4] mm 𝑡ℎ𝑟
Hub thickness (mnt) [1.5, 4] mm 𝑡ℎ𝑚
Shroud thickness (reg) [1.5, 4] mm 𝑡𝑠𝑟
Shroud thickness (mnt) [1.5, 4] mm 𝑡𝑠𝑚
Vane thickness (reg) [1.5, 4] mm 𝑡𝑣𝑟
Vane thickness (mnt) [1.5, 4] mm 𝑡𝑣𝑚

To evaluate the correlation between similarity and prediction error,
he mean absolute error was plotted against ranges of inter-similarity. A
orrelation between error and inter-similarity should result in a slope,
here data with a high inter-similarity generally results in a reduced
ean error, and vice versa. The error is defined as the absolute distance

etween the predicted value, and the value returned by a simulation. In
his test, the simulated output was the maximum deformation of a TRS
nder the influence of a static load, evaluated using Ansys workbench.
his particular output was selected as it is computationally expensive
o calculate using simulations.

First, training and test data were generated. For the training data,
set of 100 design points were evaluated. These design points were

ampled using a hypercube DoE. Solid CAD geometries were then
enerated from these design points, using a method described in a
eparate paper (Martinsson Bonde et al., 2022). After generating the
AD models, each geometry was also meshed. This process, along with
he geometry generation, is somewhat sensitive and expected to fail for
small fraction of the designs. A common reason for this is conflicting
AD-model constraints, which can result in invalid geometries. For the
raining dataset one design failed to mesh, resulting in a final sample
ize of 𝑛𝑡𝑟𝑎𝑖𝑛 = 99 that were evaluated through simulation. The testing

dataset had a total initial sample size of 750, also sampled using a
hypercube DoE. Out of those 750 samples 19 failed to mesh, resulting
in a final test sample size of 𝑛𝑡𝑒𝑠𝑡 = 731. The dimensionality of the data
was 𝑘 = 8, and the specific boundaries used for the DoEs are described
in Table 2.

To enable calculating the prediction error of the surrogate models,
the design points in the test dataset were also evaluated using simu-
lations. Thus, the difference between the simulated and the predicted
value was used to determine the prediction error. The experiment
process is presented in Fig. 5.

The results of the analysis visualized in Fig. 6 depicts how the
choice of surrogate model affected the results. For these results, Eu-
clidean distance was used to measure the similarity, and thus a lower
inter-similarity score indicates a higher inter-similarity. It can be ob-
served that all three surrogate models follows the expected trend
of a high inter-similarity (low inter-similarity score) resulting in a
lower surrogate model prediction error. In this particular instance,
the second-degree polynomial response surface has the best overall
performance in terms of prediction error. Yet it still displays a promi-
nent slope, as with the other two surrogate models, where an lower
inter-similarity generally results in a larger prediction error.

A second evaluation using the same data, but a different similarity
metric (the Jaccard similarity coefficient) was conducted. As previously
mentioned, unlike Euclidean distance, the Jaccard similarity score is
high when the similarity is high. The results, as visualized in Fig. 7,
show that the choice of similarity metric did not result in a significant
difference in the trend. While the result is marginally different, the
conclusion is the same: a high inter-similarity results in a reduced mean
7

prediction error.
From these results it can be concluded that inter-similarity often
is an indicator of surrogate model trustworthiness. At this point, one
important question that might arise is ‘‘how similar is similar enough?’’.
It should first be clarified that it is not recommended for engineers to
screen results based on inter-similarity as it is merely an indication of
trustworthiness and of how exhaustive the high-fidelity coverage of the
design space is. With that in mind, in a design study context, the exact
threshold for ‘‘similar enough’’ will not be known. The correlation be-
tween surrogate model prediction error and inter-similarity evaluated
in this section was only studied for a specific output with a particular
dimensionality and sample size. In an industrial scenario, evaluating
the correlation between inter-similarity and prediction error to find an
appropriate threshold would likely not be feasible, as doing so would be
highly computationally expensive. However, we argue that design engi-
neers will have use for the knowledge of which design points are likely
to be the most trustworthy (those with the highest inter-similarity).
Having a clear indication that a design space region is not appropriately
represented in the training dataset, or that a set of designs are in close
proximity to a high-fidelity result can help designers assess when to
deploy additional simulations, and when not to. In other words, it is not
possible to say what degree of inter-similarity is enough for a prediction
to be trustworthy, but having access to the similarity information can
help design engineers understand their surrogate models, and their
design spaces. In Section 4.3 a basic tool will be described that assists
in visualizing this additional layer of information for design engineers,
and in Section 4.4 the proposed method will be utilized in a design
study, demonstrating how the reasoning described above can be applied
in an industrial context.

4.3. Visualization tool

To make the similarity information useful, it is necessary to some-
how visualize it. To that end, a prototype tool was developed that
demonstrates how similarity information can be presented to a design
engineer to assist in design space exploration activities. The tool is
written in JavaScript (Vue.js), and can be used through a browser. A
user can import a Comma-Separated Values (CSV) file into the tool to
visualize the contained data using scatter plots and parallel coordinates
diagrams. The intended use case is to enable the visualization of data
within a CSV-file that contains: (1) the design points from a DoE, and
(2) simulation and surrogate model analysis results for those design
points. By pre-processing the imported data, the inter-similarity of each
design point can be added as an additional column within the CSV-file.
The tool can then be used to color code the plots based on inter-
similarity, thus giving an indication of inter-similarity of each design
point.

Scatter plots, parallel coordinate diagrams, and color coding is not
new. The functionality this tool adds is the possibility to measure the
distance in the design space between two design points. When looking
at a scatter plot, the user can select one design point to immediately
color code all other design points based on the design space distance
between them and the selected design point. This does not require inter-
similarity to be pre-calculated, as the calculation is done within the
tool itself. Furthermore, selecting an additional point will grant the
user information regarding the distance between the two points, and
the differences between them (both input and output are listed). A
screenshot from the design study in Section 4.4 when this functionality
was utilized is available in Appendix.

Finally, the user can swap between a scatter plot view, and a parallel
coordinates view. Samples can be selected in either of the view, which
are then automatically highlighted in the other view. This can be useful
when the user wishes to, for example, understand why some result has
a low inter-similarity. By selecting the design points that reportedly
have a low inter-similarity, the user can then switch to the parallel
coordinates diagram to get a visualization of the design space region

that lacks representation of higher-fidelity data.
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Fig. 5. The correlation study process. This schematic shows the flow of design points and their corresponding geometrical representations throughout the experiment. This
sequence was run six times, with two different similarity metrics (Euclidean distance and Jaccard similarity) and three different surrogate models (2nd-degree and 3rd-degree
response surfaces, and a Gaussian process with an RBF kernel).
Fig. 6. Depicts the correlation of surrogate model error and inter-similarity using Euclidean distance as a similarity metric. A lower inter-similarity value indicates a closer
inter-similarity. The number above the bars indicate the number of samples in that similarity range.
4.4. Application in a design study context

In this section the process flow visualized in Fig. 1 is followed for
the design space exploration of a TRS component. In this exploration,
the goal is to identify how the design can be adjusted through its
design variables to account for stiffness and weight requirements. It
is necessary for a TRS to be able to absorb large mechanical loads in
cases of engine failure (such as fan-blade-out). At the same time, the
design needs to be light to reduce fuel consumption. Thus, two design
objectives were considered: (1) The component needs to be as stiff as
possible, and (2) The component needs to be as light as possible. To
8

measure the stiffness, the maximum deformation (𝛿max) of the structure
under a specific load was used as a proxy. A lower deformation thus
means a higher stiffness. Additionally, since the entire TRS is build
using the same material, the volume (𝑉 ) was measured rather than the
weight.

With the design objectives in place, the next step was to define
appropriate design variables and ranges. For a TRS it is expected that
the number of vanes, how they are leaned, and different structural
wall thicknesses will have a significant impact on max deformation and
volume. The considered design variables listed in Table 2 were chosen
accordingly.
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Fig. 7. Depicts the correlation of surrogate model error and inter-similarity using Jaccard similarity coefficient as a similarity metric. For this metric a high inter-similarity
(maximum 1) indicates a closer inter-similarity.
A DoE with 100 samples in a hypercube configuration was instan-
tiated, in which the selected design variables were varied within the
defined ranges. These design points were then used to generate CAD-
models and finite element meshes. These context models were then
applied in two types of design analysis. The first analysis was a volume
extraction using Siemens NX. The other analysis was a static structural
load case simulation in Ansys. Both the generation of context models
and the design analysis were computationally expensive. Thus, the de-
sign points from the DoE were coupled with the results from the design
analysis to form a dataset that was used to train two surrogate models:
one for predicting the volume, and one for predicting the stiffness.
This enabled the evaluation of the stiffness and volume of a design
point without running computationally expensive model generations
and simulations. At this point a multi-objective optimization problem
was defined (see Eq. (4)) to identify the trade-off curve between the
two design objectives (low deformation and low volume) in the design
space.

min
𝐱

[

𝑉 (𝐱), 𝛿max(𝐱)
]T

where 𝐱 =
[

𝑁, 𝛼, 𝑡hr, 𝑡hm, 𝑡sr, 𝑡sm, 𝑡vr, 𝑡vm
]

𝑁 ∈ {8, 9, 10,… , 18}

0◦ ≤ 𝛼 ≤ 25◦

1.5 mm ≤ 𝑡hr, 𝑡hm, 𝑡sr, 𝑡sm, 𝑡vr, 𝑡vm ≤ 4 mm

(4)

A genetic algorithm was utilized with a population of 100 samples.
It should be noted here that the ranges for the variables used in Eq. (4)
are the same as the ranges used in the initial DoE defined in Table 2.
Thus, all optimization results exists within the same design space
region as the simulated design points. Despite this, the results from the
optimization study managed to reach lower levels of deformation and
volume relative to any of the simulated samples. In Fig. 8 the results
from the optimization has been plotted together with the analysis
results of the simulated dataset.

Inter-similarity analysis
The optimization resulted in a clear trade-off curve. The next step

was to get an indication of the trustworthiness of these new results
that were generated using the surrogate models, through the use of
inter-similarity. The data in Fig. 8 was thus color-coded based on inter-
similarity. The inter-similarity results shows that the design points with
the lowest volumes on the Pareto front are relatively far from any of
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the simulated design points in the design space, as they have inter-
similarity values ranging from 0.25 to 0.35. This means that if a design
with a very low volume and a relatively low stiffness would have
been of interest, then further design points would have needed to be
evaluated through simulations to increase trust in the relevant region(s)
of the design space.

Using the interactive visualization tool described in Section 4.3,
the low-fidelity design points with a low volume were selected in the
scatter plot. The results were then exported to a parallel coordinates
plot, which enabled a visualization of the design space region within
which these design points reside. In Fig. 9, these design points are
plotted on a parallel coordinates diagram. A set of filters has been
applied that correspond to this design region, which is characterized by
low thicknesses, few vanes and a high vane lean. By identifying the low-
trust design region, it would be possible for the designers to generate
additional geometries for a set of designs within this region, and
analyze them through simulations. The results from those simulations
could then be used to improve the performance of the surrogate models,
thus increasing the trustworthiness of results from surrogate model
predictions within this design space region.

Fig. 8 also shows a set of design points in the middle of the Pareto
front that are in close proximity to simulated design points (an inter-
similarity of around 0.15), meaning that these data are likely to be
more trustworthy. Since the design objectives of this design space
exploration activity were to identify stiff and light-weight structures,
it was concluded that these data in the middle of the Pareto front were
promising. Thus, the exploration process proceeded on to the next step:
to calculate the similarity to legacy designs.

Legacy similarity analysis
When calculating legacy similarity, data available from previous

design analysis and existing products are included. Since legacy design
points have been tested thoroughly in the past with both simulations
and in some cases physical tests, these data are of the highest fidelity
available. In this design study example three hypothetical legacy de-
signs were used, evaluated using simulations. Since these legacy designs
are not based on the exact same design, they do not share all design
variables. However, they are part of the same scale-based product
family, and thus share some variables used for determining the size
of the component, and some of its main characteristics. The common
variables are: The outer diameter (𝐷 ), the inner diameter (𝐷 ), the
o i
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Fig. 8. Results from the optimization step color coded based on inter-similarity. Euclidean distance was used to measure inter-similarity. Thus, a lower inter-similarity indicates
that the data has a close neighbor in the simulation dataset. The data points from the simulations turn up blue in the plot, as they by definition have an inter-similarity of 0 (they
are similar to themselves).
Fig. 9. Parallel coordinates diagram depicting a design space region within which the low-fidelity surrogate models report that the volume/weight of the design should be low.
The boxes in the diagram represent filters, which have been used to filter out any design points not within that region, leaving only surrogate model results (as indicated by the
FIDELITY-axis). To increase trust in surrogate model predictions within this region, more simulations needs to be run within this subspace.
Table 3
Legacy design points with their corresponding key design variable values.
Design name 𝐷o 𝐷i 𝑁 𝛼

Legacy design A 1500 mm 500 mm 18 10◦

Legacy design B 800 mm 350 mm 8 20◦

Legacy design C 900 mm 400 mm 12 25◦

number of vanes (𝑁), and the vane lean (𝛼). These are the variables that
were be used to determine the legacy similarity between the simulated
and surrogate model evaluated design points and the legacy design
points. The variables and their values for the legacy design points have
been listed in Table 3.
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Once again the tool was used to calculate these values and visualize
the data. In Fig. 10 the three legacy data points have been plotted along
with the data from the simulations and optimization. Notably, design
point B and C are to the left of the Pareto front, as they were designed
for smaller engines (they have a lower outer diameter). This enables
them to reach lower volumes. Meanwhile, design point A is for a much
larger engine, and thus has a relatively high volume. In the figure, one
of the most trustworthy points (based on its inter-similarity) has been
selected using the tool, which results in all other design points being
color coded based on their similarity to the selected point. Using the
color coding it was possible to identify that legacy design point C was
the closest high fidelity design point relative to the selection. The tool
reports a legacy similarity of 0.158 relative to the selection, which can
be extracted from the tool by selecting both the legacy design point,
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Fig. 10. Plot with data from all three levels of fidelity: surrogate model, simulated, and legacy. The legacy data has been marked in the plot. In this figure the color code is
dependant on the similarity of all design points relative to the selected design point (also marked out in the figure).
and the point which you want to compare it with. This comparison also
returns a lists of the differences between the two design points, which in
this case reported that the legacy design point has the same number of
vanes and vane lean, but has slightly smaller inner and outer diameters
relative to the selected design point. Thus, the overall dimension of
the legacy design point was slightly smaller, but it had the same vane
configuration.

After establishing that legacy design point Cwas relatively similar to
the selected design point on the Pareto front, two important conclusions
could be made. Firstly, since the selected design point and the legacy
design point C also have similar outputs (volume and max deformation)
that information helps verify the trustworthiness of the surrogate model
results. Secondly, the similarity between the two design points may be
close enough to enable some degree of knowledge, model, or data reuse.
Using the information presented in the tool (the differences between the
two design points) a team of cross-functional engineers could decide
on whether or not knowledge, analysis models and/or data could be
reused. The potential of reuse can then influence whether more detailed
studies should be conducted on the design points of interest.

4.5. Discussion

As stated in the introduction, the aim of the proposed method
is to reduce the time allocated to high-fidelity simulations, and to
improve the efficiency of obtaining promising design configurations.
Thus, the first question that needs to be answered is: does the pro-
posed method achieve this goal? In the design study, a situation was
exemplified where the surrogate model had produced trustworthy or
non-trustworthy results depending on the desired outcome of the de-
sign space exploration activity. If the designers had been looking for
low-volume designs where high deformation was acceptable, then the
inter-similarity metric clearly indicated that the data produced by the
surrogate models was not to be trusted. In other words: it was too far
from anything that had been previously simulated. It is possible that
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this could have been avoided by tweaking or choosing another design
of experiments. However, there is no way of knowing beforehand where
in the design space the Pareto-optimal design points will be situated. An
experienced engineer may be able to predict which design variables are
the most important for individual objectives, though such predictions
are difficult in trade-off scenarios, and less useful in multi-objective
design optimization scenarios where there are more than two objectives
that needs to be fulfilled. In the example scenario, the inter-similarity
measurement served as an indication to the designers not to trust
these data. A designer who encounters this kind of result needs to run
more simulations, or understand that the surrogate model results may
be far from their true values. On the other hand, the more balanced
alternatives in the middle of the Pareto front were found to be relatively
close to previously simulated design points. In this scenario, running
more simulations in this area would likely not result in improved or
more accurate results. Thus, the inter-similarity has saved the designer
precious computational resources by indicating that the results are
likely trustworthy.

A second question that needs to be addressed is: in what scenarios is
the proposed method useful? Inter-similarity provides design engineers
with an additional layer of information which can assist in under-
standing the trustworthiness of surrogate model predictions, and the
coverage of high-fidelity analysis within the design space. This addi-
tional layer is created using already existing information (the design
points). Since no new information is necessary to create this layer of
information, it can be included in any study that utilizes surrogate
models. In Section 4 aero-engine component design is used as to
demonstrate the proposed method. However, the use of inter-similarity
is generally applicable to broader model-based design analysis and
optimization applications. Arguably, inter-similarity can be useful in
any design space exploration scenario where compromises needs to
be made on surrogate model accuracy. Calculating inter-similarity is
inexpensive from a computational perspective, and can thus be done
without penalty. It is also easy to automate this process. Legacy similar-
ity, on the other hand, has a slightly narrower use case. It is well-suited
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for scenarios where previous designs and existing products have been
similar enough to the new designs to enable measurable comparisons.
As previously mentioned, a good example is when developing new
designs within a scale-based product family, where new products are
scaled up/down versions of existing solutions. Having the possibility
to measure the similarity between new designs and existing solutions
can be useful in three ways: (1) to verify simulation results based
on test or experiment data from higher fidelity analysis run on an
existing solution; (2) to identify the potential to reuse knowledge,
analysis models, and data from previous designs and products; (3) to
avoid or reconsider designs that are similar to existing products that
encountered problems during their life cycles (e.g., manufacturability
or reliability problems).

One final question: does utilizing inter-similarity and legacy similarity
make the job of the design engineer easier? If the effort to calculate inter-
similarity and legacy similarity is too great, then it may outweigh
the potential benefits of utilizing those metrics. In the case of inter-
similarity, it can easily be calculated automatically either using a script
run after the optimization stage (as was done in the design study
presented in this paper), or in real-time while using the tool if the
dataset is small enough. By utilizing vector operations, calculating
inter-similarity can be done in less than a second for datasets with
a sample size of 1000. Increasing the sample size will naturally also
increase the calculation time, but it will likely remain insignificant if
implemented in an efficient way. Legacy similarity, however, provides
a greater challenge as it requires the engineers to have access to
downstream data from existing products in an appropriate format. This
has proven difficult historically (Andersson and Isaksson, 2008), and
would require an initial effort to configure a database that can store
the necessary information, or some other mechanism that is able to
aggregate the necessary information from existing databases. However,
granted that the design engineers have access to downstream data
in an appropriate format, and that legacy designs are comparable to
new designs, then calculating and utilizing legacy data would be both
attainable and useful.

5. Conclusion

A method was proposed to assist design engineers in evaluating
the trustworthiness of surrogate model results during design space
exploration. It considers similarity to design instances assessed with
a high confidence as a means to improve trust in low-fidelity predic-
tions. Such similarity was referred to as ‘‘inter-similarity’’: the closest
distance in the design space from a surrogate model evaluated point,
to a point analyzed with simulations. The intended benefit of utilizing
this measurement is to reduce the need for running computationally
expensive simulations, and to assist design engineers in navigating
complex design spaces.

An experiment was conducted where the correlation between inter-
similarity and surrogate model prediction error was evaluated. The
results of this experiment suggested that inter-similarity is a useful
indicator of trust for surrogate models with high dimensionality that
have been trained with a low sample size. Scenarios in which such
‘‘low-quality’’ surrogate models are used are common in industry. This
is because simulations are typically used to evaluate designs, but are
often too computationally expensive to be used for design space explo-
ration. Surrogate models are then used as a means to reduce the need
for simulations, thus reducing computational expenses for the price of
diminished accuracy.

The method also utilizes similarity to existing products and designs
analyzed with a high fidelity. This is referred to as ‘‘legacy similarity’’:
the distance in the design space from a new design point, to a point
that has been evaluated with high fidelity in previous endeavors. The
purpose of this metric is to provide a means to indicate relevancy of
12

existing knowledge, analysis models, and data. At the same time, it can
also be used to verify analysis results by indicating that a similar ex-
isting product/legacy design has been evaluated and produced similar
results. This, together with inter-similarity, was exemplified in a design
study conducted on a static aero-engine component. In this design study
it was demonstrated how both of these metrics (inter-similarity and
legacy similarity) can be used to improve the design space exploration
process. To facilitate the use of these metrics in the design study and in
future industrial applications a prototype software tool was developed
to visualize the similarity information.

The relevance and utility of an inter-similarity metric in practice
was demonstrated through an experiment, and a design space ex-
ploration study. It was shown that this metric can be used together
with other metrics in early design studies to assist design engineers.
Furthermore, inter-similarity is relatively easy to calculate and deploy,
meaning that it can be integrated into new development projects with-
out significant effort. Legacy similarity, however, has more challenging
prerequisites: downstream data such as data from physical tests, or
from high-fidelity simulations, need to be accessible in a useful format.
In practice, this is not as straightforward as it might appear. Such data
are created, stored, and used for other purposes, and it would require
a larger effort to set up such conditions within many companies. If the
prerequisites can be resolved then legacy similarity can be utilized in
a similar fashion as inter-similarity in situations where previous gener-
ations of products are comparable to new designs, such as in product
families. It should however be noted that inter-similarity and legacy
similarity are independent from each other, and does not require the
other to function as intended. However, when utilized together, as in
the proposed method, both computational expenses and development
lead times can potentially be reduced.
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