To address environmental challenges, the Architecture, Engineering, Construction, and Operations (AECO) industry, which is known for its high resource consumption and waste production, needs to switch to a circular economy (CE). This approach focuses on reducing, recycling, and reusing materials to narrow, slow, and close material loops. However, one of the main problems which the AECO industry is still facing is the lack of common, standardized, and automated procedures to consider the recyclability and presence of hazardous materials. To address this problem, this study focuses on extending the recyclability rate from the material to building scale, considering the presence of hazardous materials based on the European Waste Catalogue (EWC), hence defining a new KPI. It adopts Building Information Modelling (BIM) and Industry Foundation Classes (IFCs) and integrates them with bespoke programming in Python to develop a standardized and automated procedure that complies with Italian regulations. The new KPI will help clients and designers to rate the overall recyclability of a building and to choose the best combination of materials and components. The procedure includes data acquisition, transmission, and data/model integration, resulting in practical and trackable measures that could be globally scalable. Scenario analyses are also developed to consider the impact of maintenance attitude on waste production.

A New Building Information Modelling-Based Approach to Automate Recyclability Rate Calculations for Buildings

Fereydooni Eftekhari, Alireza;Khodabakhshian, Ania;Iuorio, Ornella;Re Cecconi, Fulvio;Daniotti, Bruno
2024-01-01

Abstract

To address environmental challenges, the Architecture, Engineering, Construction, and Operations (AECO) industry, which is known for its high resource consumption and waste production, needs to switch to a circular economy (CE). This approach focuses on reducing, recycling, and reusing materials to narrow, slow, and close material loops. However, one of the main problems which the AECO industry is still facing is the lack of common, standardized, and automated procedures to consider the recyclability and presence of hazardous materials. To address this problem, this study focuses on extending the recyclability rate from the material to building scale, considering the presence of hazardous materials based on the European Waste Catalogue (EWC), hence defining a new KPI. It adopts Building Information Modelling (BIM) and Industry Foundation Classes (IFCs) and integrates them with bespoke programming in Python to develop a standardized and automated procedure that complies with Italian regulations. The new KPI will help clients and designers to rate the overall recyclability of a building and to choose the best combination of materials and components. The procedure includes data acquisition, transmission, and data/model integration, resulting in practical and trackable measures that could be globally scalable. Scenario analyses are also developed to consider the impact of maintenance attitude on waste production.
2024
circular economy; maintenance; building information modelling; industry foundation classes; life-cycle analysis
File in questo prodotto:
File Dimensione Formato  
buildings-14-01521.pdf

accesso aperto

Descrizione: Articolo
: Publisher’s version
Dimensione 2.82 MB
Formato Adobe PDF
2.82 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1266469
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact