Ultra-high-performance concrete (UHPC) stands out as a crucial construction material, boasting outstanding mechanical properties and exceptional durability in its uncracked state. The distinctive strain-hardening tensile behavior of UHPC necessitates a consideration of material and structural durability in the cracked state, prompting a rethinking of structural concepts and design approaches. Consequently, various competing mechanisms, including material deterioration, self-sealing, and self-healing capabilities, require meticulous assessment. The autogenous nature of the self-healing capacity of the material, crafted with compositions tailored to specific mechanical properties, further underscores this evaluation. This study elucidates above concepts by compiling and analyzing an extensive database of crack closure data obtained and processed through image processing techniques. This research specifically delves into appraising the self-sealing capacity of UHPC under structural service conditions, encompassing challenges such as chloride and sulfate attacks. Additionally, it endeavors to distinguish the crack healing kinetics of diverse UHPC mix designs, calibrating them across varying crack widths (0–20, 20–50, 50–100, 100–300 μm) and diverse healing environments. These findings assume significance in establishing the "healable width threshold" and the "self-healing coefficients of the crack healing kinetics law" under "structural service conditions".

Incorporation of self-healing of UHPC in structural design approaches through healable crack width threshold and kinetics: The case study of H2020 project ReSHEALience database

Huang, Zhewen;Cuenca, Estefania;Ferrara, Liberato
2024-01-01

Abstract

Ultra-high-performance concrete (UHPC) stands out as a crucial construction material, boasting outstanding mechanical properties and exceptional durability in its uncracked state. The distinctive strain-hardening tensile behavior of UHPC necessitates a consideration of material and structural durability in the cracked state, prompting a rethinking of structural concepts and design approaches. Consequently, various competing mechanisms, including material deterioration, self-sealing, and self-healing capabilities, require meticulous assessment. The autogenous nature of the self-healing capacity of the material, crafted with compositions tailored to specific mechanical properties, further underscores this evaluation. This study elucidates above concepts by compiling and analyzing an extensive database of crack closure data obtained and processed through image processing techniques. This research specifically delves into appraising the self-sealing capacity of UHPC under structural service conditions, encompassing challenges such as chloride and sulfate attacks. Additionally, it endeavors to distinguish the crack healing kinetics of diverse UHPC mix designs, calibrating them across varying crack widths (0–20, 20–50, 50–100, 100–300 μm) and diverse healing environments. These findings assume significance in establishing the "healable width threshold" and the "self-healing coefficients of the crack healing kinetics law" under "structural service conditions".
2024
Self-healing kinetic law, Healable crack width threshold, UHPC, Durability, Index of crack closure
File in questo prodotto:
File Dimensione Formato  
Huang et al DIBE 2024 reduced.pdf

accesso aperto

Descrizione: Huang et al DIBE 2024
: Publisher’s version
Dimensione 864.14 kB
Formato Adobe PDF
864.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1261758
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact