Analytical QoT models require safety margins to account for uncertain knowledge of input parameters. We propose a new design procedure for restoration planning and upgrade and show up to 19% savings in transponders from lower margins estimated via ML.
ML-Assisted Restoration Planning and Upgrade with Low Design Margins
O. Karandin;F. Musumeci;M. Tornatore
2023-01-01
Abstract
Analytical QoT models require safety margins to account for uncertain knowledge of input parameters. We propose a new design procedure for restoration planning and upgrade and show up to 19% savings in transponders from lower margins estimated via ML.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Polimi_Huawei_ECOC_2023.pdf
accesso aperto
:
Pre-Print (o Pre-Refereeing)
Dimensione
297.27 kB
Formato
Adobe PDF
|
297.27 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.