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Abstract Analytical QoT models require safety margins to account for uncertain knowledge of input
parameters. We propose a new design procedure for restoration planning and upgrade and show up to
19% savings in transponders from lower margins estimated via ML. ©2023 The Author(s)

Introduction

Machine Learning (ML) and signal quality moni-
toring enable low margin optical network design
aimed at reducing network cost1. However, low
margin design for resilient optical networks is still
under-investigated. As optical networks are used
by applications with high availability requirements
in most of today’s deployments, resilience to fail-
ures is achieved by either protection or restora-
tion2. Protection pro-actively reserves spectrum
along a backup path that guarantees service re-
covery, while restoration is best-effort as it re-
actively seeks a path with available spectrum af-
ter the failure happens. As restoration paths are
unknown during network planning, transponders
installed to operate along primary paths may not
have enough capacity to fully restore traffic along
potentially longer restoration paths. Pre-planned
restoration3, the resiliency technique investigated
in this study, solves this problem by precom-
puting restoration paths and installing additional
transponders as needed during commissioning.

Network operators are always looking to reduce
the cost of protection/restoration schemes. To in-
stall fewer transponders one needs to precisely
predict Quality of Transmission (QoT) (e.g., Sig-
nal to Noise Ratio, SNR) for unestablished light-
paths along protection/restoration paths. Exist-
ing analytical QoT models4 achieve high accu-
racy, assuming exact knowledge of input parame-
ters (e.g., connector loss, amplifier gain profile).
However, in real-life these inputs are often not
known precisely5, and safety design margins are

imposed to guarantee that modulation format as-
signed to the lightpath based on predicted QoT
is feasible in the field deployment. The extent
of these margins depends on the available infor-
mation about the network and its size, but can
easily reach 2-3 dB in core networks6, leading
to significant under-utilization of resources. No-
table research effort has been recently dedicated
to lowering these margins by either estimating the
precise values of uncertain input parameters7, 8, 9

or directly predicting QoT metrics using measure-
ments from previously established lightpaths10.

The only existing work that combines ML-based
low-margin design and resilience in optical net-
works is6, where authors demonstrate savings
from ML-based QoT-estimation for dedicated and
shared protection. In this work, for the first time
to the best of our knowledge, we investigate pos-
sible savings from ML-estimated design margins
in 2 restoration scenarios: 1) Restoration Plan-
ning and 2) Restoration Upgrade. Our numerical
results on realistic network instances show up to
19% savings in transponders by simply leveraging
SNR data monitored at the receivers.

Restoration Planning and Upgrade
Example. In Fig. 1 we demonstrate how lower
design margins allow to save transponders when
planning restoration. Consider a 500 Gbit/s traf-
fic request provisioned along the primary path
(green solid line) using 1 transponder operating at
500 Gbit/s. With a conservative worst-case mar-
gin only 400 Gbit/s can be sent along the longer
restoration path (red dotted line), and hence an
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Fig. 1: An example of benefits of low-margin restoration planning
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Fig. 2: (a) Restoration Planning and (b) Restoration Upgrade algorithms

extra transponder is needed to restore the re-
maining 100 Gbit/s. With a lower margin all 500
Gbit/s can be provisioned along the restoration
path with 1 transponder, and an extra transponder
is not installed. Note that, in the example with the
worst-case margin restoration is supported by in-
verse multiplexing, as the aggregated 500 Gbit/s
traffic request is split between two transponders.
Physical-layer uncertainties modeling. In this
work, we consider that uncertainties in physical-
layer parameters that cause inaccurate analytical
QoT estimations and motivate the use of design
margins are 1) non-flatness of EDFA gain profile
(i.e., gain ripple), 2) unaccounted losses in optical
connectors and 3) wrong fiber type specifications.
We emulate SNRModel (i.e., SNR predicted with
the analytical model) using values of parameters
known during planning and SNRField (i.e., SNR
actually measured in the field) using actual pa-
rameter values. See11 for more details.
Restoration scenarios. We simulate two restora-
tion scenarios: 1) Planning and 2) Upgrade.

In Restoration Planning (Fig. 2a) we start from
greenfield deployment and want to incrementally
provision requests in the traffic matrix and install
enough transponders to guarantee restoration in
all N-link fault scenarios. We assume that traf-
fic requests arrive in batches. For the first batch
of requests we use a worst-case margin MWorst

estimated by a-priori testing of a large number
of gain ripple profiles, connector loss values and
fiber types. For every next traffic batch we use

per-path predictions of MML = SNRModel −
SNRField by a Gradient Boosted Tree regressor
that is trained using SNRField of the existing light-
paths. For each new traffic request we allocate
spectrum resources using k-Shortest-Path rout-
ing and First-Fit spectrum allocation and compute
k restoration paths for all N-link fault scenarios
(except the ones that make restoration impossi-
ble due to topology constraints). Then we ensure
that enough transponders are installed to carry
the requested traffic along any of the k restoration
path. With our ML-assisted approach, we save
transponders with an estimated MML ≤ MWorst

when determining the modulation formats (MFs)
for the primary lightpaths and for the potential
lightpaths along the candidate restoration paths.

In Restoration Upgrade (Fig. 2b) we start
from a brownfield deployment, already planned
for restoration against N-link faults, as described
in Restoration Planning but using only MWorst,
and want to install enough transponders to guar-
antee restoration in all K -link fault scenarios,
where K > N (i.e, we upgrade restoration ca-
pabilities from N- to K -link failures). We train
the ML margin-estimator using SNRField from all
the established lightpaths, compute restoration
paths for all K -link fault scenarios and ensure that
there are enough transponders to carry the re-
quested traffic along any restoration path. Also
in this case, we save transponders by using ML-
estimated design margin MML < MWorst when
determining MFs for the potential lightpaths along



Tab. 1: Savings in the number of primary, extra restoration and total TRX in Restoration Planning scenario (S) in GE17 (EU19)

Number of
faulty links (N)

Savings in
primary TRX, %

Savings in extra
restoration TRX, %

Total savings
in TRX, %

k = 5 k = 10 k = 5 k = 10 k = 5 k = 10
1 5.6 (8.2) 5.7 (8.3) 8.8 (25.7) 13.3 (21.8) 6.4 (12.2) 7.6 (11.8)
2 4.9 (8.1) 4.6 (8.2) 19.5 (19.4) 19.8 (14.6) 8.5 (11.3) 9.2 (10.1)
3 3.4 (7.7) 4.1 (7.9) 16.7 (15.6) 13.6 (12.5) 7.2 (10.2) 7.3 (9.2)

Tab. 2: Cost of restoration upgrade in Restoration Upgrade scenario (CU ) with worst-case and ML-margin in GE17 (EU19)

Upgrade in number
of faulty links (N-to-K)

CU with worst-case margin CU with ML-margin Savings from ML-margin
k = 5 k = 10 k = 5 k = 10 k = 5 k = 10

0 to 1 22.7 (29.4) 31.1 (34.8) 13.4 (12.8) 19.0 (15.9) 9.3 (16.6) 12.1 (18.9)
1 to 2 7.3 (7.1) 8.9 (5.2) -4.5 (-6.4) -4.3 (-7) 11.8 (13.5) 13.2 (12.2)
1 to 3 11.6 (10.7) 17.2 (12.3) 0.7 (-2.5) 2.2 (-3.6) 10.9 (13.3) 15.0 (15.9)

the candidate restoration paths, while MFs as-
signed to primary lightpaths are not modified to
avoid disruption of existing services.

Numerical Results
We perform our numerical evaluations on two re-
alistic topologies, a 19-node European network
(EU19) with links scaled to 70% of their actual
length to perform restoration without the use of
regenerators and a 17-node German network
(GE17)12. Results are averaged considering 20
mesh traffic matrices with data rate requests ran-
domly distributed between 200 Gb/s and 1000
Gb/s with 100 Gb/s step. We keep provisioning
traffic requests till there is enough spectrum to
guarantee restorability in any fault scenario. More
requests can be provisioned with a larger number
k of pre-computed restoration paths.

We assume EDFAs with 5 dB noise figure
placed every 80 km. We operate in a 6-THz
C-band with ASE-loading. Traffic is provisioned
by 90 Gbaud transponders capable of 300-800
Gbit/s with 20 dB back-to-back SNR and SNR
thresholds from13 with a 1 dB system margin.

Connector losses are 0.5 dB in the model and
are uniformly distributed in [0.5; 1.5] dB in the
field. 75% of fiber spans are SMF, while 25%
are LEAF fibers. We assume that 20% of spans
have incorrect fiber type specified. For each field
EDFA we randomly select one of 18 ripple pro-
files measured on amplifiers in our testbed. We
use MWorst for the first N = 25 requests (2 dB in
GE17 and 2.5 dB in EU19), then start estimating
MML and retrain the model every 25 requests.

In Tab. 1 we show savings (in %) in the number
of transponders (TRX) from the use of MML w.r.t.
MWorst in Restoration Planning scenario:

S =
TRXML margin − TRXWorst margin

TRXWorst margin
× 100% (1)

In GE17 (EU19) with k=5 pre-computed
restoration paths, we save 5.6 (8.2)% of primary

TRX, 8.8 (25.7)% of extra restoration TRX and
6.4 (12.2)% in total. Savings in primary TRX de-
crease as the number of potentially faulty links in-
creases and only slightly change for k=10. Sav-
ings in extra restoration TRX in GE17 grow to
19.5% for N=2 and decrease to 16.7% for N=3,
while in EU19 they monotonically decrease with
an increase in N . Total savings in TRX increase
and then decrease in GE17, and decrease in
EU19.

In Tab. 2 we show relative cost of restoration
upgrade (in %) in Restoration Upgrade scenario
with MWorst and MML margins:

CU =
TRXRestor. K>N − TRXRestor. N

TRXRestor. N
× 100% (2)

Use of ML-estimated margins lowers the cost
of a restoration upgrade in GE17 (EU19) by as
much as 15 (19)%. Cost of upgrade is highest
in the 0-to-1 scenario (no restoration to restora-
tion against a single-link failure) and decreases
for the 1-to-2 and 1-to-3 scenarios. In 1-to 2 sce-
nario cost of upgrade becomes negative as more
restoration transponders get installed for a sin-
gle failure than are necessary for a double failure
with the reduced margin. Cost of a restoration up-
grade increases between k=5 and k=10 as more
transponders are needed to restore traffic along
longer restoration paths with lower SNR. In all up-
grade scenarios high savings come from the fact
that network before the upgrade was planned us-
ing MWorst, and the number of extra restoration
transponders was significantly overdimensioned.

Conclusion

We proposed a new design procedure for low-
margin restoration planning and upgrade and
demonstrate up to 19% savings in transponders.
Achieved savings are significant especially con-
sidering that they are enabled by simply collecting
monitored data in standard coherent receivers.
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