We make a case for in-network Continual Learning as a solution for seamless adaptation to evolving network conditions without forgetting past experiences. We propose implementing Active Learning-based selective data filtering in the data plane, allowing for data-efficient continual updates. We explore relevant challenges and propose future research directions.
Poster: Continual Network Learning
Di Cicco N.;Antichi G.;Tornatore M.
2023-01-01
Abstract
We make a case for in-network Continual Learning as a solution for seamless adaptation to evolving network conditions without forgetting past experiences. We propose implementing Active Learning-based selective data filtering in the data plane, allowing for data-efficient continual updates. We explore relevant challenges and propose future research directions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
_SIGCOMM_2023__Poster__Continual_Network_Learning.pdf
accesso aperto
:
Pre-Print (o Pre-Refereeing)
Dimensione
482.16 kB
Formato
Adobe PDF
|
482.16 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.