
Poster: Continual Network Learning
Nicola Di Cicco

Politecnico di Milano
Milan, Italy

Amir Al Sadi
Università di Bologna

Bologna, Italy

Chiara Grasselli
Università di Bologna

Bologna, Italy

Andrea Melis
Università di Bologna

Bologna, Italy

Gianni Antichi
Politecnico di Milano

Milan, Italy

Massimo Tornatore
Politecnico di Milano

Milan, Italy

ABSTRACT
Wemake a case for in-network Continual Learning as a solution for
seamless adaptation to evolving network conditions without forget-
ting past experiences. We propose implementing Active Learning-
based selective data filtering in the data plane, allowing for data-
efficient continual updates. We explore relevant challenges and
propose future research directions.

KEYWORDS
In-network Machine Learning, Continual Learning, Active Learn-
ing, Programmable Data Planes

1 INTRODUCTION
Machine Learning (ML) has lately become a prominent research
area for the networking community, with applications in a broad
range of topics such as traffic classification [31], routing [8], con-
gestion control [1], and traffic forecasting [19]. In particular, in-
network ML has become very attractive, as it allows to leverage
the expressiveness of ML models at data plane speed [28, 33]. The
common denominator between many in-network ML use-cases is
to train a model in the control plane using annotated historical data,
and then deploy the model in the data plane for near real-time in-
ference [21, 26, 33]. Unfortunately, the training data will eventually
become outdated (a phenomenon formally known as “distribution
shift” or “concept drift”), causing the deployed ML model to suffer
from performance degradation [16, 17]. While the necessity for fre-
quent model updates has already been raised [3], three fundamental
questions remain: (1) When should we update our model? The
answer is (in theory) fairly simple: continuously. We should assume
that the input patterns observed by a deployed ML model may
change at any point in time; (2) Which data should we select
for model updates? Again, the answer is (in theory) simple: only
the data that is useful for learning new things. (3) What should
our model learn? In principle, everything. We want a model that
dynamically expands its predictive power without forgetting past
experiences.

In this poster, we aim to take a step towards designing a solution
that answers those questions. We propose combining Active Learn-
ing (AL) [23], which enables filtering relevant information from a
vast pool of unannotated data, and Continual Learning (CL) [10],
which allows us to learn from streaming datawithout forgetting past
concepts. The former, implemented in the switch ASIC, allows us
to choose the right amount of information that shall be mirrored to
the control plane, where the model is updated continually. Finally,
the new model can be installed back in the data plane.

Train Test
0

5

A
bs

. e
rr

or
 (s

)

Train Test
0.00

0.25

0.50

Flow duration

10

20

Ti
m

e
(s

)

Max IAT
0

1

2018/03/15 13:00UTC 2019/01/17 13:00UTC 2019/01/17 14:00UTC

Figure 1: Distribution shift of TCP flow features from a real-
world commercial backbone link [7]. The distribution shift
of flow duration and inter-arrival time (IAT) causes perfor-
mance degradation of a ML model trying to predict them.

Implementing this solution is nontrivial and needs answering
the following research questions: (1) how to implement AL-based
filtering in the data plane?; (2) how selective should AL be for
network learning?; (3) which ML models are most suitable for
continual learning of network traffic?; and (4) how to dynamically
reconfigure the data plane?

2 THE CASE FOR CONTINUAL LEARNING
We run some tests on real-world traces to characterize the amount
of distribution shift in TCP flow features. We extracted commonly-
used features from real-world traces [7] (e.g., flow duration, inter-
arrival time (IAT), and packet size statistics). We observed a shift
in the flow duration and in the maximum IAT for small time scales
(∼one hour) and for large time scales (∼a year), respectively. To
quantify the impact of these shifts, we consider ad-hoc regression
tasks1 where the targets are either the flow duration or the max-
imum IAT. We observe2 that the test error is significantly larger
than training, a phenomenon that is imputable to the observed fea-
ture drifts (Fig. 1). Indeed, classical ML models will work properly
only if the train and test data are approximately i.i.d. [5]. As such,
practical in-network ML calls for smart, adaptive approaches.

Why can’t we run existing proposals in a loop? Literature
has been active in proposing efficient means for offloading trained
ML models to the data plane [9, 28, 29, 34]. We here consider an
orthogonal problem: how to train a ML model continually from
packet streams with the optimal amount of annotated training data.
Though Online Learning approaches have been explored [17, 28],
they 1) assume that every streamed data point is labeled, and 2) do
not pay attention about forgetting the past as long as the model

1This is because CAIDA traces do not have task-specific class labels.
2For visualization purposes, we focus on the ranges [5, 20]s for flow duration and [0,
1.5]s for inter-arrival time.

ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA Di Cicco and Al Sadi, et al.

Switch ASIC

M
irr

or
ed

 tr
ai

ni
ng

 d
at

a

Control plane 1. ML training with
Continual Learning

2. Model to switch pipeline mapper

3. Model deployment

5. In-network Machine
Learning model inference

6. Selective packet mirroring
with Active Learning4. Feature extraction

Switch CPU

Figure 2: Our approach. The MLmodel is created (1) and then
deployed in the switch ASIC (2), to perform inference at data
plane speed (3). Selective mirroring (4) with Active Learning
is deployed to keep theML updated with Continual Learning.

is fit to the current experience. In our proposal, we want not only
to learn adaptively, but also to remember (and therefore exploit)
everything that was observed in the past. In this way, our model will
not need additional data for re-learning already-observed concepts.

3 OUR APPROACH
Fig. 2 illustrates our proposal: to incorporate in a single closed-loop
framework the following building blocks:
(1) Model training: update the ML model over the time with CL.
(2) Model deployment: deploy the new ML model in the data plane.
(3) In-network inference: enable inference at data plane speed.
(4) Selective mirroring: mirror to the control plane only the data

useful for expanding the knowledge of the model with AL.
As a proof-of-concept experiment, we consider a subset of the
CIC2019 dataset for DDoS classification [24]. We consider DDoS
classes to represent disjoint learning tasks, which are presented
to the model in sequence. For each task, the model must not only
discriminate between benign and malicious flows but also place the
malicious flows in the right class.

We implement a baseline Continual Random Forest (CRF), con-
sisting of a RF augmented with a replay buffer storing the most
informative past exemplars. We use the vote count as AL query
strategy, selecting only data points whose predictions had less than
90%majority. We retrain after each query, which is computationally
efficient for RFs. We consider an Adaptive Random Forest (ARF) as
a purely online (but not continual) state-of-the-art baseline [11, 17].
In contrast to CRF, ARF assumes that every data point is labeled.
We also consider an "oracle" RF trained on the full dataset as an
upper-bound on the average performance over all tasks.

Fig. 3 shows the performance of CRF and ARF over the sequential
tasks, and the percentage of queried labels by CRF relative to the
full stream size. A purely adaptive learner such as ARF, though able
to master individual tasks, quickly forgets past concepts. Instead,
our baseline CRF achieves a performance close to the oracle upper-
bound, while requiring labeling only ∼1% of the observed samples.

4 CHALLENGES
Challenge #1: implementing AL-based filtering in the data
plane. Vote count in our baseline CRF is a decent query strategy,

0.50
1.00

#Q
ue

rie
s

%

Portmap LDAP MSSQL UDP UDPLag Syn
Learning Task

1.00
0.85
0.70
0.55A

cc
ur

ac
y

CRF - Present & Past Tasks
ARF - Present & Past Tasks

ARF - Present Tasks
RF - All Tasks (Oracle)

Figure 3: Adaptive vs. Continual Random Forests for class-
incremental DDoS classification on CIC2019. At the end of
the stream, CRF achieves performance close to an “oracle”
while requiring only ∼1% of the data.

but information-theoretic quantities [4, 12] are among the state-of-
the-art. Their data plane implementation is not trivial, as it would
require floating-point arithmetics. Even if not standard, authors in
[18] propose a way to implement floating-point arithmetics in P4.
Challenge #2: how selective should AL be. A small selectivity
implies a large mirroring overhead, whereas a large selectivity im-
plies a potential information loss. Applying AL to streaming data is,
as of today, a novel twist on classical techniques [22]: investigating
these trade-offs opens up interesting research directions.
Challenge #3: choosing the right CL strategy. Our baseline
leverages a slowly-growing experience buffer, which may not be
desirable. Strategies for maintaining the buffer of fixed size can be
investigated [20]. Other solutions, e.g., regularized neural networks,
do not require any storage overhead other than the model [15], but
are ill-advised for tabular data [25]. Ultimately, the choice depends
on the available storage/computational resources and the goodness-
of-fit to the characteristics of task-specific data.
Challenge #4: runtime dataplane reconfiguration. Currently,
if we want to add a new functionality to a switch, we need first to
reroute the traffic of that switch, flush a new image in its ASIC and
then restore the original traffic policy configuration. This process
can lead to dramatic consequences if performed carelessly [14].
Programming the switch at run-time is possible [32], but not for
RMT [6], the common commercial devices architecture [2, 13]. Re-
searchers have also explored means to enable isolation between
offloaded programs [27, 30, 35], which we will investigate to isolate
the Active Learning processing and the rest of the pipeline.

REFERENCES
[1] Soheil Abbasloo, Chen-Yu Yen, and H. Jonathan Chao. 2020. Classic Meets

Modern: A Pragmatic Learning-Based Congestion Control for the Internet. In
Proceedings of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols for
Computer Communication (Virtual Event, USA) (SIGCOMM ’20). Association for
Computing Machinery, New York, NY, USA, 632–647. https://doi.org/10.1145/
3387514.3405892

[2] AMD. 2019. Naples DSC-100 Distributed Services Card. https://pensando.io/
assets/documents/Naples_100_ProductBrief-10-2019.pdf.

[3] G. Apruzzese, P. Laskov, and J. Schneider. 2023. SoK: Pragmatic Assessment of
Machine Learning for Network Intrusion Detection. In 2023 IEEE 8th European
Symposium on Security and Privacy (EuroS&P). IEEE Computer Society, Los
Alamitos, CA, USA, 592–614. https://doi.org/10.1109/EuroSP57164.2023.00042

[4] Freddie Bickford Smith, Andreas Kirsch, Sebastian Farquhar, Yarin Gal, Adam
Foster, and Tom Rainforth. 2023. Prediction-Oriented Bayesian Active Learning.
In Proceedings of The 26th International Conference on Artificial Intelligence and
Statistics (Proceedings of Machine Learning Research, Vol. 206), Francisco Ruiz,
Jennifer Dy, and Jan-Willem van de Meent (Eds.). PMLR, Valencia, Spain, 7331–
7348. https://proceedings.mlr.press/v206/bickfordsmith23a.html

[5] Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Infor-
mation Science and Statistics). Springer-Verlag, Berlin, Heidelberg.

https://doi.org/10.1145/3387514.3405892
https://doi.org/10.1145/3387514.3405892
https://pensando.io/assets/documents/Naples_100_ProductBrief-10-2019.pdf
https://pensando.io/assets/documents/Naples_100_ProductBrief-10-2019.pdf
https://doi.org/10.1109/EuroSP57164.2023.00042
https://proceedings.mlr.press/v206/bickfordsmith23a.html

Poster: Continual Network Learning ACM SIGCOMM ’23, September 10, 2023, New York, NY, USA

[6] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis:
Fast Programmable Match-Action Processing in Hardware for SDN. SIGCOMM
Comput. Commun. Rev. 43, 4 (aug 2013), 99–110. https://doi.org/10.1145/2534169.
2486011

[7] CAIDA. 2019. The CAIDA UCSD Anonymized Internet Traces - 2018-2019.
https://www.caida.org/catalog/datasets/passive_dataset

[8] Brian Chang, Aditya Akella, Loris D’Antoni, and Kausik Subramanian. 2023.
Learned Load Balancing. In Proceedings of the 24th International Conference
on Distributed Computing and Networking (Kharagpur, India) (ICDCN ’23). As-
sociation for Computing Machinery, New York, NY, USA, 177–187. https:
//doi.org/10.1145/3571306.3571403

[9] Bruno Coelho and Alberto Schaeffer-Filho. 2022. BACKORDERS: Using Random
Forests to Detect DDoS Attacks in Programmable Data Planes. In Proceedings
of the 5th International Workshop on P4 in Europe (Rome, Italy) (EuroP4 ’22).
Association for Computing Machinery, New York, NY, USA, 1–7. https://doi.
org/10.1145/3565475.3569074

[10] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš
Leonardis, Gregory Slabaugh, and Tinne Tuytelaars. 2022. A Continual Learning
Survey: Defying Forgetting in Classification Tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence 44, 7 (2022), 3366–3385. https://doi.org/10.
1109/TPAMI.2021.3057446

[11] Heitor M. Gomes, Albert Bifet, Jesse Read, Jean Paul Barddal, Fabrício Enembreck,
Bernhard Pfharinger, Geoff Holmes, and Talel Abdessalem. 2017. Adaptive
random forests for evolving data stream classification. Machine Learning 106, 9
(Oct 2017), 1469–1495. https://doi.org/10.1007/s10994-017-5642-8

[12] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel.
2011. Bayesian Active Learning for Classification and Preference Learning.
arXiv:1112.5745 [stat.ML]

[13] Intel. 2020. Tofino: P4-programmable Ethernet switch ASIC. https:
//www.intel.com/content/www/us/en/products/network-io/programmable-
ethernet-switch/tofino-series/tofino.html.

[14] Santosh Janardhan. 2021. Facebook Outage on October 4th 2021. https:
//engineering.fb.com/2021/10/04/networking-traffic/outage/.

[15] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guil-
laume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ra-
malho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dhar-
shan Kumaran, and Raia Hadsell. 2017. Overcoming catastrophic forget-
ting in neural networks. Proceedings of the National Academy of Sci-
ences 114, 13 (2017), 3521–3526. https://doi.org/10.1073/pnas.1611835114
arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.1611835114

[16] Ankur Mallick, Kevin Hsieh, Behnaz Arzani, and Gauri Joshi. 2022. Match-
maker: Data Drift Mitigation in Machine Learning for Large-Scale Systems. In
Proceedings of Machine Learning and Systems, D. Marculescu, Y. Chi, and C. Wu
(Eds.), Vol. 4. 77–94. https://proceedings.mlsys.org/paper_files/paper/2022/file/
069a002768bcb31509d4901961f23b3c-Paper.pdf

[17] Pavol Mulinka and Pedro Casas. 2018. Adaptive Network Security through Stream
Machine Learning. In Proceedings of the ACMSIGCOMM2018 Conference on Posters
and Demos (Budapest, Hungary) (SIGCOMM ’18). Association for Computing
Machinery, New York, NY, USA, 4–5. https://doi.org/10.1145/3234200.3234246

[18] Shivam Patel, Rigden Atsatsang, Kenneth M. Tichauer, Michael H. L. S. Wang,
James B. Kowalkowski, and Nik Sultana. 2022. In-Network Fractional Calcu-
lations Using P4 for Scientific Computing Workloads. In Proceedings of the 5th
International Workshop on P4 in Europe (Rome, Italy) (EuroP4 ’22). Association
for Computing Machinery, New York, NY, USA, 33–38. https://doi.org/10.1145/
3565475.3569083

[19] Yu Qiao, Chengxiang Li, Shuzheng Hao, Jun Wu, and Liang Zhang. 2022. Deep or
Statistical: An Empirical Study of Traffic Predictions on Multiple Time Scales. In
Proceedings of the SIGCOMM ’22 Poster and Demo Sessions (Amsterdam, Nether-
lands) (SIGCOMM ’22). Association for Computing Machinery, New York, NY,
USA, 10–12. https://doi.org/10.1145/3546037.3546048

[20] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. 2017. iCaRL: Incremental
Classifier and Representation Learning. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA,
USA, 5533–5542. https://doi.org/10.1109/CVPR.2017.587

[21] Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. 2018. Can the Network
Be the AI Accelerator?. In Proceedings of the 2018 MorningWorkshop on In-Network
Computing (Budapest, Hungary) (NetCompute ’18). Association for Computing
Machinery, New York, NY, USA, 20–25. https://doi.org/10.1145/3229591.3229594

[22] Akanksha Saran, Safoora Yousefi, Akshay Krishnamurthy, John Langford, and
Jordan T. Ash. 2023. Streaming Active Learning with Deep Neural Networks.
arXiv:2303.02535 [cs.LG]

[23] Burr Settles. 2012. Active Learning. Springer Cham, Cham, Switzerland. https:
//doi.org/10.1007/978-3-031-01560-1

[24] Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and Ali A. Ghorbani.
2019. Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset
and Taxonomy. In 2019 International Carnahan Conference on Security Technology
(ICCST). IEEE, Chennai, India, 1–8. https://doi.org/10.1109/CCST.2019.8888419

[25] Ravid Shwartz-Ziv and Amitai Armon. 2021. Tabular Data: Deep Learning is Not
All You Need. In 8th ICML Workshop on Automated Machine Learning (AutoML).
https://openreview.net/forum?id=vdgtepS1pV

[26] Giuseppe Siracusano and Roberto Bifulco. 2018. In-network Neural Networks.
arXiv:1801.05731 [cs.DC]

[27] Radostin Stoyanov and Noa Zilberman. 2020. MTPSA: Multi-Tenant Pro-
grammable Switches. In Proceedings of the 3rd P4 Workshop in Europe (Barcelona,
Spain) (EuroP4’20). Association for Computing Machinery, New York, NY, USA,
43–48. https://doi.org/10.1145/3426744.3431329

[28] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle
Olukotun. 2022. Taurus: A Data Plane Architecture for per-Packet ML. In Pro-
ceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’22). Association for Computing Machinery, New York, NY, USA, 1099–1114.
https://doi.org/10.1145/3503222.3507726

[29] Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle
Olukotun. 2023. Homunculus: Auto-Generating Efficient Data-PlaneML Pipelines
for Datacenter Networks. In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing Ma-
chinery, New York, NY, USA, 329–342. https://doi.org/10.1145/3582016.3582022

[30] TaoWang, Xiangrui Yang, Gianni Antichi, Anirudh Sivaraman, and Aurojit Panda.
2022. Isolation Mechanisms for High-Speed Packet-Processing Pipelines. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
22). USENIX Association, Renton, WA, 1289–1305. https://www.usenix.org/
conference/nsdi22/presentation/wang-tao

[31] MatthiasWichtlhuber, Eric Strehle, Daniel Kopp, Lars Prepens, Stefan Stegmueller,
Alina Rubina, Christoph Dietzel, and Oliver Hohlfeld. 2022. IXP Scrubber: Learn-
ing from Blackholing Traffic for ML-Driven DDoS Detection at Scale. In Pro-
ceedings of the ACM SIGCOMM 2022 Conference (Amsterdam, Netherlands) (SIG-
COMM ’22). Association for Computing Machinery, New York, NY, USA, 707–722.
https://doi.org/10.1145/3544216.3544268

[32] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo, Yonatan Piasetzky, Arvind
Krishnamurthy, and Ang Chen. 2022. Runtime Programmable Switches. In 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22).
USENIX Association, Renton, WA, 651–665. https://www.usenix.org/conference/
nsdi22/presentation/xing

[33] Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of Machine Learn-
ing? Toward In-Network Classification. In Proceedings of the 18th ACM Workshop
on Hot Topics in Networks (Princeton, NJ, USA) (HotNets ’19). Association for
Computing Machinery, New York, NY, USA, 25–33. https://doi.org/10.1145/
3365609.3365864

[34] Changgang Zheng, Zhaoqi Xiong, Thanh T Bui, Siim Kaupmees, Riyad Bensous-
sane, Antoine Bernabeu, Shay Vargaftik, Yaniv Ben-Itzhak, and Noa Zilberman.
2022. IIsy: Practical In-Network Classification. arXiv:2205.08243 [cs.NI]

[35] Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. P4Visor: Light-
weight Virtualization and Composition Primitives for Building and Testing Mod-
ular Programs. In Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies (Heraklion, Greece) (CoNEXT ’18).
Association for Computing Machinery, New York, NY, USA, 98–111. https:
//doi.org/10.1145/3281411.3281436

https://doi.org/10.1145/2534169.2486011
https://doi.org/10.1145/2534169.2486011
https://www.caida.org/catalog/datasets/passive_dataset
https://doi.org/10.1145/3571306.3571403
https://doi.org/10.1145/3571306.3571403
https://doi.org/10.1145/3565475.3569074
https://doi.org/10.1145/3565475.3569074
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1109/TPAMI.2021.3057446
https://doi.org/10.1007/s10994-017-5642-8
https://arxiv.org/abs/1112.5745
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://engineering.fb.com/2021/10/04/networking-traffic/outage/
https://engineering.fb.com/2021/10/04/networking-traffic/outage/
https://doi.org/10.1073/pnas.1611835114
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.1611835114
https://proceedings.mlsys.org/paper_files/paper/2022/file/069a002768bcb31509d4901961f23b3c-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2022/file/069a002768bcb31509d4901961f23b3c-Paper.pdf
https://doi.org/10.1145/3234200.3234246
https://doi.org/10.1145/3565475.3569083
https://doi.org/10.1145/3565475.3569083
https://doi.org/10.1145/3546037.3546048
https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1145/3229591.3229594
https://arxiv.org/abs/2303.02535
https://doi.org/10.1007/978-3-031-01560-1
https://doi.org/10.1007/978-3-031-01560-1
https://doi.org/10.1109/CCST.2019.8888419
https://openreview.net/forum?id=vdgtepS1pV
https://arxiv.org/abs/1801.05731
https://doi.org/10.1145/3426744.3431329
https://doi.org/10.1145/3503222.3507726
https://doi.org/10.1145/3582016.3582022
https://www.usenix.org/conference/nsdi22/presentation/wang-tao
https://www.usenix.org/conference/nsdi22/presentation/wang-tao
https://doi.org/10.1145/3544216.3544268
https://www.usenix.org/conference/nsdi22/presentation/xing
https://www.usenix.org/conference/nsdi22/presentation/xing
https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1145/3365609.3365864
https://arxiv.org/abs/2205.08243
https://doi.org/10.1145/3281411.3281436
https://doi.org/10.1145/3281411.3281436

	Abstract
	1 Introduction
	2 The case for continual learning
	3 Our approach
	4 Challenges
	References

