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ABSTRACT
Wemake a case for in-network Continual Learning as a solution for
seamless adaptation to evolving network conditions without forget-
ting past experiences. We propose implementing Active Learning-
based selective data filtering in the data plane, allowing for data-
efficient continual updates. We explore relevant challenges and
propose future research directions.
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1 INTRODUCTION
Machine Learning (ML) has lately become a prominent research
area for the networking community, with applications in a broad
range of topics such as traffic classification [31], routing [8], con-
gestion control [1], and traffic forecasting [19]. In particular, in-
network ML has become very attractive, as it allows to leverage
the expressiveness of ML models at data plane speed [28, 33]. The
common denominator between many in-network ML use-cases is
to train a model in the control plane using annotated historical data,
and then deploy the model in the data plane for near real-time in-
ference [21, 26, 33]. Unfortunately, the training data will eventually
become outdated (a phenomenon formally known as “distribution
shift” or “concept drift” ), causing the deployed ML model to suffer
from performance degradation [16, 17]. While the necessity for fre-
quent model updates has already been raised [3], three fundamental
questions remain: (1) When should we update our model? The
answer is (in theory) fairly simple: continuously. We should assume
that the input patterns observed by a deployed ML model may
change at any point in time; (2) Which data should we select
for model updates? Again, the answer is (in theory) simple: only
the data that is useful for learning new things. (3) What should
our model learn? In principle, everything. We want a model that
dynamically expands its predictive power without forgetting past
experiences.

In this poster, we aim to take a step towards designing a solution
that answers those questions. We propose combining Active Learn-
ing (AL) [23], which enables filtering relevant information from a
vast pool of unannotated data, and Continual Learning (CL) [10],
which allows us to learn from streaming datawithout forgetting past
concepts. The former, implemented in the switch ASIC, allows us
to choose the right amount of information that shall be mirrored to
the control plane, where the model is updated continually. Finally,
the new model can be installed back in the data plane.
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Figure 1: Distribution shift of TCP flow features from a real-
world commercial backbone link [7]. The distribution shift
of flow duration and inter-arrival time (IAT) causes perfor-
mance degradation of a ML model trying to predict them.

Implementing this solution is nontrivial and needs answering
the following research questions: (1) how to implement AL-based
filtering in the data plane?; (2) how selective should AL be for
network learning?; (3) which ML models are most suitable for
continual learning of network traffic?; and (4) how to dynamically
reconfigure the data plane?

2 THE CASE FOR CONTINUAL LEARNING
We run some tests on real-world traces to characterize the amount
of distribution shift in TCP flow features. We extracted commonly-
used features from real-world traces [7] (e.g., flow duration, inter-
arrival time (IAT), and packet size statistics). We observed a shift
in the flow duration and in the maximum IAT for small time scales
(∼one hour) and for large time scales (∼a year), respectively. To
quantify the impact of these shifts, we consider ad-hoc regression
tasks1 where the targets are either the flow duration or the max-
imum IAT. We observe2 that the test error is significantly larger
than training, a phenomenon that is imputable to the observed fea-
ture drifts (Fig. 1). Indeed, classical ML models will work properly
only if the train and test data are approximately i.i.d. [5]. As such,
practical in-network ML calls for smart, adaptive approaches.

Why can’t we run existing proposals in a loop? Literature
has been active in proposing efficient means for offloading trained
ML models to the data plane [9, 28, 29, 34]. We here consider an
orthogonal problem: how to train a ML model continually from
packet streams with the optimal amount of annotated training data.
Though Online Learning approaches have been explored [17, 28],
they 1) assume that every streamed data point is labeled, and 2) do
not pay attention about forgetting the past as long as the model

1This is because CAIDA traces do not have task-specific class labels.
2For visualization purposes, we focus on the ranges [5, 20]s for flow duration and [0,
1.5]s for inter-arrival time.
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Figure 2: Our approach. The MLmodel is created (1) and then
deployed in the switch ASIC (2), to perform inference at data
plane speed (3). Selective mirroring (4) with Active Learning
is deployed to keep theML updated with Continual Learning.

is fit to the current experience. In our proposal, we want not only
to learn adaptively, but also to remember (and therefore exploit)
everything that was observed in the past. In this way, our model will
not need additional data for re-learning already-observed concepts.

3 OUR APPROACH
Fig. 2 illustrates our proposal: to incorporate in a single closed-loop
framework the following building blocks:
(1) Model training: update the ML model over the time with CL.
(2) Model deployment: deploy the new ML model in the data plane.
(3) In-network inference: enable inference at data plane speed.
(4) Selective mirroring: mirror to the control plane only the data

useful for expanding the knowledge of the model with AL.
As a proof-of-concept experiment, we consider a subset of the
CIC2019 dataset for DDoS classification [24]. We consider DDoS
classes to represent disjoint learning tasks, which are presented
to the model in sequence. For each task, the model must not only
discriminate between benign and malicious flows but also place the
malicious flows in the right class.

We implement a baseline Continual Random Forest (CRF), con-
sisting of a RF augmented with a replay buffer storing the most
informative past exemplars. We use the vote count as AL query
strategy, selecting only data points whose predictions had less than
90%majority. We retrain after each query, which is computationally
efficient for RFs. We consider an Adaptive Random Forest (ARF) as
a purely online (but not continual) state-of-the-art baseline [11, 17].
In contrast to CRF, ARF assumes that every data point is labeled.
We also consider an "oracle" RF trained on the full dataset as an
upper-bound on the average performance over all tasks.

Fig. 3 shows the performance of CRF and ARF over the sequential
tasks, and the percentage of queried labels by CRF relative to the
full stream size. A purely adaptive learner such as ARF, though able
to master individual tasks, quickly forgets past concepts. Instead,
our baseline CRF achieves a performance close to the oracle upper-
bound, while requiring labeling only ∼1% of the observed samples.

4 CHALLENGES
Challenge #1: implementing AL-based filtering in the data
plane. Vote count in our baseline CRF is a decent query strategy,
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Figure 3: Adaptive vs. Continual Random Forests for class-
incremental DDoS classification on CIC2019. At the end of
the stream, CRF achieves performance close to an “oracle”
while requiring only ∼1% of the data.

but information-theoretic quantities [4, 12] are among the state-of-
the-art. Their data plane implementation is not trivial, as it would
require floating-point arithmetics. Even if not standard, authors in
[18] propose a way to implement floating-point arithmetics in P4.
Challenge #2: how selective should AL be. A small selectivity
implies a large mirroring overhead, whereas a large selectivity im-
plies a potential information loss. Applying AL to streaming data is,
as of today, a novel twist on classical techniques [22]: investigating
these trade-offs opens up interesting research directions.
Challenge #3: choosing the right CL strategy. Our baseline
leverages a slowly-growing experience buffer, which may not be
desirable. Strategies for maintaining the buffer of fixed size can be
investigated [20]. Other solutions, e.g., regularized neural networks,
do not require any storage overhead other than the model [15], but
are ill-advised for tabular data [25]. Ultimately, the choice depends
on the available storage/computational resources and the goodness-
of-fit to the characteristics of task-specific data.
Challenge #4: runtime dataplane reconfiguration. Currently,
if we want to add a new functionality to a switch, we need first to
reroute the traffic of that switch, flush a new image in its ASIC and
then restore the original traffic policy configuration. This process
can lead to dramatic consequences if performed carelessly [14].
Programming the switch at run-time is possible [32], but not for
RMT [6], the common commercial devices architecture [2, 13]. Re-
searchers have also explored means to enable isolation between
offloaded programs [27, 30, 35], which we will investigate to isolate
the Active Learning processing and the rest of the pipeline.
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