In this paper, the Politecnico di Milano solutions proposed for the Leonardo Drone Contest (LDC) are presented. The Leonardo Drone Contest is an annual autonomous drone competition among universities, which has already seen the conclusion of its second edition. In each edition, the participating teams were asked to design and build an autonomous multicopter, capable of accomplishing complex tasks in an indoor urban-like environment. To reach this goal, the designed systems should be capable of navigating in a Global Navigation Satellite System (GNSS)-denied environment with autonomous decision making, online planning and collision avoidance capabilities. In this light, the authors describe the first two editions of the competition, i.e., their rules, objectives and overview of the proposed solutions. While the first edition is presented as relevant for the experience and takeaways acquired from it, the second edition solution is analyzed in detail, providing both the simulation and experimental results obtained.
Leonardo Drone Contest Autonomous Drone Competition: Overview, Results, and Lessons Learned from Politecnico di Milano Team
Roggi, G;Meraglia, S;Lovera, M
2023-01-01
Abstract
In this paper, the Politecnico di Milano solutions proposed for the Leonardo Drone Contest (LDC) are presented. The Leonardo Drone Contest is an annual autonomous drone competition among universities, which has already seen the conclusion of its second edition. In each edition, the participating teams were asked to design and build an autonomous multicopter, capable of accomplishing complex tasks in an indoor urban-like environment. To reach this goal, the designed systems should be capable of navigating in a Global Navigation Satellite System (GNSS)-denied environment with autonomous decision making, online planning and collision avoidance capabilities. In this light, the authors describe the first two editions of the competition, i.e., their rules, objectives and overview of the proposed solutions. While the first edition is presented as relevant for the experience and takeaways acquired from it, the second edition solution is analyzed in detail, providing both the simulation and experimental results obtained.File | Dimensione | Formato | |
---|---|---|---|
ROGGG01-23.pdf
accesso aperto
:
Publisher’s version
Dimensione
7.58 MB
Formato
Adobe PDF
|
7.58 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.