Low-back exoskeletons are a wide-spreading technology tackling low-back pain, the leading work-related musculoskeletal disorder in many work sectors. Currently, spring-based (i.e., passive) exoskeletons are the mostly adopted in the industry, being cheaper and generally less complex and more intuitive to use. We introduce a system of interconnected wireless sensing units to provide online ergonomics feedback to the wearer. We integrate the system into our passive low-back exoskeleton and evaluate its usability with healthy volunteers and potential end users. In this way, we provide the exoskeleton with a tool aimed both at monitoring the interaction of the system with the user, providing them with an ergonomics feedback during task execution. The sensor system can also be integrated with a custom-developed Unity3D application which can be used to interface with Augmented- or Virtual-Reality applications with higher potential for improved user feedback, ergonomics training, and offline ergonomics evaluation of the workplace. We believe that providing ergonomics feedback to exoskeleton users in the industrial sector could help further reduce the drastic impact of low-back pain and prevent its onset.

Sensor-Based Task Ergonomics Feedback for a Passive Low-Back Exoskeleton

Pesenti, M;Gandolla, M;Ouyang, S;Pedrocchi, A;Covarrubias, Mario;Roveda, L
2022-01-01

Abstract

Low-back exoskeletons are a wide-spreading technology tackling low-back pain, the leading work-related musculoskeletal disorder in many work sectors. Currently, spring-based (i.e., passive) exoskeletons are the mostly adopted in the industry, being cheaper and generally less complex and more intuitive to use. We introduce a system of interconnected wireless sensing units to provide online ergonomics feedback to the wearer. We integrate the system into our passive low-back exoskeleton and evaluate its usability with healthy volunteers and potential end users. In this way, we provide the exoskeleton with a tool aimed both at monitoring the interaction of the system with the user, providing them with an ergonomics feedback during task execution. The sensor system can also be integrated with a custom-developed Unity3D application which can be used to interface with Augmented- or Virtual-Reality applications with higher potential for improved user feedback, ergonomics training, and offline ergonomics evaluation of the workplace. We believe that providing ergonomics feedback to exoskeleton users in the industrial sector could help further reduce the drastic impact of low-back pain and prevent its onset.
2022
Volume 13342 LNCS
978-3-031-08644-1
978-3-031-08645-8
Low-back pain
Exoskeleton
Industrial sector
Ergonomics
User feedback
Usability
File in questo prodotto:
File Dimensione Formato  
978-3-031-08645-8_47.pdf

accesso aperto

: Publisher’s version
Dimensione 962.42 kB
Formato Adobe PDF
962.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1232796
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact