In snow, water coexists in solid, liquid and vapor states. The relative abundance of the three phases drives snow grain metamorphism and affects the physical properties of the snowpack. Knowledge of the content of the liquid phase in snow is critical to estimate the snowmelt runoff and to forecast the release of wet avalanches. Liquid water does not spread homogeneously through a snowpack because different snow layers have different permeabilities; therefore, it is important to track sudden changes in the amount of liquid water within a specific layer. We reproduced water percolation in the laboratory, and used Raman spectroscopy to detect the presence of the liquid phase in controlled snow samples. We performed experiments on both fine- and coarse-grained snow. The obtained snow spectra are well fitted by a linear combination of the spectra typical of liquid water and ice. We progressively charged snow with liquid water from dry snow up to soaked snow. As a result, we exploited continuous, qualitative monitoring of the evolution of the liquid water content as reflected by the fitting coefficient c.
Raman spectroscopy-based assessment of the liquid water content in snow
E. Maggiore;M. Tommasini;P. M. Ossi
2022-01-01
Abstract
In snow, water coexists in solid, liquid and vapor states. The relative abundance of the three phases drives snow grain metamorphism and affects the physical properties of the snowpack. Knowledge of the content of the liquid phase in snow is critical to estimate the snowmelt runoff and to forecast the release of wet avalanches. Liquid water does not spread homogeneously through a snowpack because different snow layers have different permeabilities; therefore, it is important to track sudden changes in the amount of liquid water within a specific layer. We reproduced water percolation in the laboratory, and used Raman spectroscopy to detect the presence of the liquid phase in controlled snow samples. We performed experiments on both fine- and coarse-grained snow. The obtained snow spectra are well fitted by a linear combination of the spectra typical of liquid water and ice. We progressively charged snow with liquid water from dry snow up to soaked snow. As a result, we exploited continuous, qualitative monitoring of the evolution of the liquid water content as reflected by the fitting coefficient c.File | Dimensione | Formato | |
---|---|---|---|
2022_molecules_LWcontent-snow.pdf
accesso aperto
:
Publisher’s version
Dimensione
5.44 MB
Formato
Adobe PDF
|
5.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.