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Abstract: In snow, water coexists in solid, liquid and vapor states. The relative abundance of the
three phases drives snow grain metamorphism and affects the physical properties of the snowpack.
Knowledge of the content of the liquid phase in snow is critical to estimate the snowmelt runoff and
to forecast the release of wet avalanches. Liquid water does not spread homogeneously through a
snowpack because different snow layers have different permeabilities; therefore, it is important to
track sudden changes in the amount of liquid water within a specific layer. We reproduced water
percolation in the laboratory, and used Raman spectroscopy to detect the presence of the liquid phase
in controlled snow samples. We performed experiments on both fine- and coarse-grained snow. The
obtained snow spectra are well fitted by a linear combination of the spectra typical of liquid water
and ice. We progressively charged snow with liquid water from dry snow up to soaked snow. As a
result, we exploited continuous, qualitative monitoring of the evolution of the liquid water content as
reflected by the fitting coefficient c.

Keywords: snow; water; Raman spectroscopy; OH-stretching band; liquid water content

1. Introduction

Snow is a granular, porous material made of a mixture of ice crystals with a variety of
forms, a fraction of liquid water and water vapor in thermodynamic equilibrium [1]. The
initial shape of the crystallites formed in a cloud include plates, needles, hollow columns,
dendrites, depending on the combinations of temperature and water vapor supersaturation
values they experience along their free fall down to the ground, where they progressively
accumulate [2]. After its deposition, natural snow undergoes extensive metamorphism [3]
that consists of grain sintering under mechanical compression and thermal gradients
through the snowpack thickness due to mass and thermal energy fluxes, driven by the
weather conditions it experiences. Sun irradiation, temperature gradients, humidity and
wind are the leading factors that concur with the evolution of the layers that progressively
accumulate upon successive snowfalls and build up the snowpack. The size and shape
of the constituting snow grains concurrently evolve. In the laboratory, strict control of
ambient temperature and supersaturation allows us to produce natural-like snow crystals
with a degree of perfection higher than that of spontaneously grown crystals [4].

A relevant property of a snowpack is the liquid water content θw. This results mostly
when melted snow or rainwater infiltrates into the snow, changing its wetness [5]; alterna-
tively, the presence of thermal gradients through the snowpack may drive changes of θw in
snow layers at specific depths [6]. As such, θw in snow is a marker of snowmelt and snow
mechanical stability [7]. Accelerated melting under strong Sun irradiation, as well as heavy
rain on snow, lead to increased θw values and can result in a flood, possibly associated with
severe runoff [8] or wet avalanche release. This can be full depth when water reaches the
ground behind the snow cover, or, since the shear strength of snow reduces exponentially
with increasing the volumetric water content [9], when a wet, buried snow layer becomes
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the preferential sliding surface of the avalanche. The fate of the snowpack is further affected
by the lowered surface albedo of snow progressively impregnated with water [10] since
considerable liquid phase amounts favor the formation of ice clusters [11] that act similar
to big grains, being more efficient than small crystallites in absorbing light. Indeed, albedo
is higher in snow with smaller grains and vice versa [12].

Measuring θw is admittedly difficult and demanding [13,14]. To take into account the
space–time evolution of meltwater outflow that is correlated with the snowpack stability,
continuous recording of θw is required. Indeed, associated with θw changes are sudden,
non-linear alterations of snowpack properties and of the outflow of meltwater. Several in-
situ, more or less invasive techniques to measure θw were reviewed in the past and include
centrifugal, dielectric, calorimetric or dilution approaches [15,16]. The main drawbacks of
such techniques are the large amount of snow and the long time necessary to perform a
measurement. Thus, no successive tests can be made at a given site since the snowpack is
irreversibly altered at every measurement. More gentle, non-destructive methods are based
on the changes of spectral reflectance in the NIR region (920–1650 nm) of snow bearing
different water contents [17,18] and ground-penetrating radar, by which an electromagnetic
signal is generated and the reflected wavefield is measured, from which it is possible to
map the values of θw in the sampled region. Recent satellite and ground-based remote
sensing are based on the analysis of microwave radiation reflected at the Earth’s surface
in comparison to a signal directly received at an antenna above the ground [19,20]. These
methods leave the sampled area intact, but since the satellite repetition time is of the
order of days, snow parameters can be checked only intermittently. Mountain areas are
challenging for passive microwave systems, mostly due to the coarse spatial resolution, in
the range of a few tens of km2, and to the complicated terrain topography that produces
shadowing and foreshortening effects. Thus, presently, satellite-based sensing of snow
properties is mostly devoted to flat areas [21].

Here we describe an innovative approach based on Raman spectroscopy for the
insitu assessment of the liquid phase content in snow. We conceived this idea from the
observations that first, snow consists of frozen water; second, we are concerned with
discriminating among snow with different contents of liquid-phase water; and third, in
the region of the OH-stretching band, the Raman spectrum (RS) of ice qualitatively differs
from that of liquid water. Notably, very recently, we found a single old report (in Russian)
where Raman spectroscopy was proposed as a conceptual tool to determine the θw of
snow [22]. Other optical spectroscopy techniques, such as reflectance spectroscopy, were
used to investigate snow metamorphism [23] and to measure snow albedo to derive from
it the snow grain size, also taking into account the presence of different concentrations of
dust contaminants [24].

In our study, we used two reference types of snow with markedly different average
grain sizes (0.2 mm; 1.6 mm). By this choice, we expect that the infiltration strategy of equal,
controlled amounts of water, homogeneously deposited on the sample surface, differs in
the two snow kinds. We recorded RS from the snow samples at a fixed height below the
water-wet surface, at fixed delays with respect to the wetting time. We observed that the RS
of snow with different fractional contents of the liquid phase, driven by the degree of water
infiltration, can be described well by a weighted linear combination of the spectra of ice
and liquid water. For both kinds of tested snow, we plotted vs. time the weighting factor (c)
as well as the independently measured liquid phase fraction. We found a smooth behavior
of c with two evident thresholds. Each threshold occurs at the same value of liquid phase
fraction for both kinds of snow. By our method, we collected RS from specific points in
the snow volume. Even though punctual information could be of less interest when the
global liquid water content in a snow volume is required, local Raman measurements such
as those presented here provide useful insight regarding the progressive accumulation of
liquid water at specific locations in the snowpack, e.g., within snow layers that lay on top
of a melt-freeze crust. The water content in such layers is critical for a wet avalanche release
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because the accumulated liquid water reduces the cohesive force among snow grains, thus
dramatically decreasing the mechanical stability of the snowpack.

2. Results

In Table 1, we report the measured amounts of water accumulated inside the empty
container by spraying water from progressively increasing distances from the top open
surface. In our experiments, we sprayed water from a point placed between 3 and 5 cm
above the container opening (see Section 4 for details). In such a condition, the average
collected water per spray is 0.15 g.

Table 1. Water mass collected in the container after spraying from progressively increased heights
above the top open surface.

Height (cm) Collected Water after 100
Sprays (g)

Average Collected Water per
Spray (g)

0 18.3 0.183
5 11.6 0.116
10 3.9 0.039
15 3.3 0.033
20 2.6 0.026

We performed four different experiments in which we added controlled amounts of
liquid water to different snow batches, as summarized in Table 2, where the conditions
adopted to charge with water the two different kinds of snow, namely natural-like snow
(NLS) and natural snow (NS) (see Section 4 for details) are grouped. We remark that the
density of NLS (280 kg m−3) differs from that of NS (380 kg m−3). Lower density snow is
characterized by a more open microstructure with more pores that result in increased water
vapor presence. Around 0 ◦C enhanced melting is likely to occur. Yet, in our experiments,
we discard the role of water vapor due to the dominant weight of the amount of liquid
water we deliberately inject in the sample from its top surface.

Table 2. Experimental parameters adopted to add liquid water to the snow samples.

Snow Kind;
Injection Method

Initial Snow
Mass (g)

Total Mass of
Injected Water (g)

Number of
Injection Steps

Water Mass per
Unit Step (g)

NLS; spray 11.6 4.8 31 0.15
NLS; pipette 3 4.7 100 0.047

NS; pipette 1st 3 4.8 100 0.048
NS; pipette 2nd 3.1 4.2 100 0.042

We collected the reference spectra of bulk ice and liquid water at 0 ◦C in a mixture of
ice/water from a volume of distilled water, focusing the laser spot at the same fixed distance
for both measurements. We normalized the intensity of both spectra according to the
intensity of the most relevant ice peak. The obtained spectra are reported in Figure 1a and
clearly show how the different hydrogen-bonding networks that characterize ice and liquid
water produce markedly different Raman bandshapes in the OH-stretching region [25].
Such a different spectral profile can be used to qualitatively assess, by a least-square fitting
procedure, the relative amount of liquid water in snow, as described below.
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Figure 1. (a) RS of ice (blue curve) and liquid water (red curve) at 0 ◦C normalized to the maximum
intensity of the ice spectrum. Panels (b–d) are the fits (pink curves) to three representative experimen-
tal spectra (green curves), as obtained by Equation (1) with the indicated values of the c coefficient. In
each panel, we report the different relative intensities of the spectra of ice and water.

After the acquisition of the RS of snow, we first operated spike removal and baseline
correction over the range 2800–3800 cm−1 (OH-stretching band), and the spectra were
normalized. To fit all RS collected from snow samples, we use a linear combination of the
ice and water spectra according to:

Ifit(ω) = (1 − c) × Iice(ω) + c × Iwater(ω), (1)

where Iice(ω) and Iwater(ω) are the intensities of the reference spectra of ice (normalized
to its maximum) and water (normalized to the maximum of ice spectrum), respectively.
c is the fitting coefficient that runs between 0 (pure ice) and 1 (pure liquid water). For a
given snow sample, we obtain the value by minimizing the squared sum of the residuals
(S2) computed using the measured normalized spectrum of wet snow (Imeas(ω)) and the
fitted spectrum given by Equation (1) in the spectral range of the OH-stretching region
(2800 cm−1 = ωa < ω < ωb = 3800 cm−1), according to:

S2 =
∫ ωb

ωa

[
Imeas(ω)− I f it(ω)

]2
dω (2)

In Figure 1 b–d, we show the experimental spectra of wet snow samples containing
different amounts of water, fitted with the spectrum associated with the value of the c
coefficient (Equations (1) and (2)) that allows the experimental data to match in the best
way (i.e., in the least-squares sense).
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For this set of experiments (see Section 4 for details), we used the spray bottle, and
we collected six RS after each spray in order to establish a stationary distribution of liquid
water throughout the snow volume along the time required to take RS. When we used the
pipette, we collected a single RS for every addition of water. Since in this experiment the
snow volume is smaller, we assumed that water requires less time to obtain a stationary
volume distribution with respect to water addition using the spray bottle.

We investigated the percolation of water through the snow by a specific experiment. In
Figure 2, we report four representative frames of a video collected during the progressive
addition of a diluted (0.03% in volume; see Section 4) water-colored solution to a sample
of NS. Moving from plate (a) to plate (d) of the figure, we notice that the fraction of the
green-colored area and the intensity of the coloration progressively increase. This coincides
with a correspondingly large number of times the fixed liquid water volume (0.04 mL)
was uniformly dropped onto the snow surface using the pipette, from 4 (20 s; plate a) to 7
(35 s; plate b) and 14 (70 s; plate c) to 62 (310 s; plate d). We observed that initially (plate a)
liquid water was mostly deposited at the top surface of the snow, and it appears as a barely
visible green shaded area. The increased intensity of green coloration of plate b coincides
with liquid water penetrating down to the bottom of the container through a percolation
path. From this point on, water diffusion through snow mostly occurs along the already
established path involving progressively larger snow volumes (plate c). After the heaviest
water injection, the whole bottom of the container is saturated with liquid water (plate d).
The above trend is the same observed in the dye infiltration experiment through snow [26].
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Figure 2. Snow pictures taken from the bottom of the container after uniformly dropping (a) 4, (b) 7,
(c) 14, (d) 62 pipettes of green-colored water onto the snow top surface. The contrast of the pictures is
enhanced to highlight the green-colored areas.
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In Figure 3, we show the trend of the c coefficient (Equation (1)) vs. time, as represented
by the black curves. The red curves provide the liquid water (LW) mass fraction in the
samples. Figure 3a refer to NLS that underwent successive water sprayings. After an initial
region where c values are nearly constant, a sudden vertical discontinuity (disc. 1) at an
LW mass fraction value of 0.13 is followed by a region of roughly constant c values.
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Figure 3. Trend of the c coefficient (black curves and ordinate scale) and liquid water mass fraction
(red curves and ordinate scale) for selected combinations of snow kind and degree of liquid water
injection. (a) NLS, spray; (b) NLS, pipette; (c) NS, pipette 1st; (d) NS, pipette 2nd. See text for details.

In Figure 3b, we show the result of an experiment similar to the one discussed in
Figure 3a, apart from the more consistent water injection in the snow that was possible
when we used a pipette. Indeed, in this case, the mass of the snow sample is about 25% of
the sample mass used for spraying measurements (see Table 2). The initial trend of the c
coefficient is similar to that in Figure 3a: the average c value in the initial region is around
0.15. The vertical discontinuity (disc. 1) occurs at the value of LW mass fraction 0.17, and
again a nearly flat region of c values follows up to a second vertical discontinuity (disc. 2)
at the LW mass fraction 0.55. Discontinuity 2 is less marked than discontinuity 1, and it is
followed by a region of nearly constant c values.

The same kind of measurement just discussed, when performed on a NS sample
(Figure 3c), qualitatively mirrors the trend of the c coefficient already discussed for Figure 3b.
The discontinuities occur at LW mass fraction values of 0.13 and 0.6, respectively. Remark-
ably, in Figure 3c, the steep increase of the c value across the discontinuity region is rather
high, around 0.7. We believe that such a large value is due to the combination of the
coarse snow grain of this sample (see Figure 4a) and of the focusing conditions. Indeed,
since the laser spot diameter is less than the average grain size, it is likely that a small
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number of snow grains is illuminated, thus magnifying the liquid water contribution in the
recorded RS.
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Figure 4. Stereo-microscopy pictures of (a) natural and (b) natural-like snow grains.

In Figure 3d, we show the results we obtained when the same measurement as for
Figure 3c was performed under defocused laser irradiation. The consequence is a noisier
c trend. We identify again the two discontinuities placed at LW mass fractions of 0.13
(disc. 1) and 0.55 (disc. 2), respectively. In between the discontinuities, we observe a
roughly constant c trend centered around 0.3. Notably, disc 1 is less marked than in all
other experiments. Our choice for locating the position of such a discontinuity was driven
by the observation that there is a jump in c values coincident with an LW mass fraction
equal to the value evident in Figure 3c. Two discontinuities occur at high LW mass fraction,
as indicated by the arrows in Figure 3d: it is, however, irrelevant which one is considered
since the LW mass fraction value for both discontinuities is nearly the same (0.48; 0.51).

In Table 3, we display the LW mass fraction values for our samples at discontinuities
1 and 2.

Table 3. LW mass fraction at the c discontinuities.

Snow Kind; Injection
Methos

LW Mass Fraction at
Discontinuity 1

LW Mass Fraction at
Discontinuity 2

NLS; spray 0.13
NLS; pipette 0.17 0.55

NS; pipette 1st 0.13 0.55
NS; pipette 2nd 0.13 0.6

3. Discussion

Some remarks on the results of the evolution of the LW mass fraction in our samples
are pertinent. We observe that the initial c value differs from 0 in all measurements. This
means that even when no liquid water is introduced in the sample, the RS cannot be fitted
with the only contribution of bulk ice. We attribute this fact to the role of surfaces in the RS
of snow [27] that are covered by a quasi-liquid water layer, the thickness of which becomes
relevant over the temperature range −1–0 ◦C. Such a layer provides liquid water to the RS
of snow. Since NLS is made of grains of smaller average size, the contribution of liquid
water is larger than in NS. This corresponds to a higher c coefficient (about 0.15) for NLS
than for NS (on average, 0.1).

Discontinuity 1 observed in Figure 3a–d can be related to the pictures in Figure 2
and to the kinetics of liquid water infiltration through the snow. In the initial stage, the
LW content in the volume where the RS is collected is nearly constant. The discontinuity
coincides with the time when the liquid waterfront reaches the collection volume of the
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RS. Then the water level remains nearly constant until water expands through the entire
snow volume. We associate the different values taken by the c coefficient along this stage in
NLS (about 0.5; see Figure 3b) and in NS (about 0.3; see Figure 3d) to the different average
grain sizes of the two kinds of snow that behave in a sponge-like manner. In fact, NLS with
smaller grains is a more efficient sponge (larger c) able to retain a larger amount of liquid
water than NS. The above c values are in agreement with the volumetric water content
measured with other techniques [28].

Discontinuity 2 is associated with the formation of a layer completely filled with liquid
water at the bottom of the sample, as we observed. In this condition, since the laser is
focused at a fixed height with respect to the sample bottom, the fractional contribution of
liquid water to RS, with respect to that of ice, becomes dominant.

The experiments discussed above appear suitable to detect the presence of liquid
water in a snow volume and to follow the evolution of the progressive filling of snow with
the liquid phase. This is facilitated by the spectral shape analysis of the RS of the wet
snow sample, based on the weighted contributions of the spectral features of ice and water.
Indeed, the recorded RS result solely from the vibrational contributions of water and ice.
The contributions from other species, such as chemical contaminants and dust, provide
additional peaks that can be easily spotted and rejected in the analysis of the RS. Thus,
Raman spectroscopy opens the way to the investigation of the spatial-temporal changes in
the water content of snow using a non-destructive and minimally invasive optical approach.
For on-field applications, a vertical trench across the snowpack thickness is required to
take RS at different depths corresponding to progressively accumulated snow layers. For a
quantitative estimate of θw, we still have to determine the calibration curve of our method
against θw, as measured by an assessed, independent technique. We plan to exploit this
activity in future research.

4. Materials and Methods

We performed our experiments inside a home-built climatic chamber. We recorded
the temperature by placing a type K thermocouple at the bottom (immersed in stagnant
air) of a commercial freezer. We connected the thermocouple to an Arduino board (model
Uno) feedback looped to a relay that acts as a switch and turns on the freezer when the
temperature recorded by the thermometer is higher than −1 ◦C. With this system, we kept
the temperature inside the climatic chamber between −2 ◦C and −0.5 ◦C. The top opening
of the freezer was closed with a 2 cm thick Styrofoam plate; we cut a circular opening at the
center of the plate, through which we could inject water on the top surface of the sample.
Given the low thermal conductivity of air, we assume that over the temperature range
explored during our experiments, neither melting of snow nor freezing of water occurred
in association with heat exchanges between the snow samples and the surrounding air.

To reduce, as much as possible, the melting of snow grains during the addition of
liquid water, we used distilled water at 0 ◦C to avoid handling of undercooled water with
the associated metastability. We partially frost a volume of water to constantly keep liquid
water at 0 ◦C during the experiments.

We filled a cylindrical Polypropylene container with an external diameter of 39 mm, a
height of 6 cm and 2 mm thick lateral surfaces with snow, without compacting it. We re-
moved the bottom of the container, and we closed it with an optically transparent Polyethy-
lene (PE) film (thickness 10 µm) impermeable to liquid water. The film was stretched to
obtain folding-free transparent sealing to ensure optimal quality of the recorded RS.

We added liquid water to the snow using a spray bottle and a pipette. Our purpose is
to simulate the random fall of raindrops on the snowpack surface.

In the first set of experiments, we used a spray bottle that produced a puff of water
droplets of average size between 200 µm and 600 µm. The water mass ejected in each
spray was about 0.22 g. The amount of liquid water collected in the container was smaller
than the injected water mass because a fraction of the droplets evaporate or fall outside
the container. In the second set of experiments, we added liquid water to snow using an
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adjustable volume pipette (Model: Gilson P1000). The pipette was kept 2 cm above the top
open surface of the snow. Under these conditions, the whole ejected water fell onto the
snow surface. In all pipette experiments, we set a fixed volume of 0.04 mL per injection.

We used two reference types of snow: natural snow (NS) and natural-like snow (NLS).
NS was collected from a field at Gressoney Sant Jean (Aosta Valley, Italy). It was gently
collected using a plastic scoop and filled in plastic containers avoiding any compaction. We
stored NS inside the closed containers at a temperature of −15 ◦C for seven months. After
this period, the average size (taken out of 20 randomly chosen grains) of NS was 1.6 mm,
as shown in Figure 4a, and the density of NS was 380 kg m−3.

We produced NLS using the method described in [29]. NLS was stored under the
same temperature conditions as NS for 2 months after synthesis. Due to metamorphism,
the average snow grain size increased up to 0.2 mm (taken out of 20 different snow grains),
as shown in Figure 4b. The density of NLS was 280 kg m−3.

The pictures of the snow samples were acquired with an Olympus SZX16 stereomicro-
scope(Tokyo, Japan) connected to an LC30 Olympus digital color camera.

To visually look at the process of water spreading through the two kinds of snow, we
colored a sample of liquid water with a diluted solution (0.03% in volume) of a green dye.
The color of the solution is transparent greenish. We maintained the solution at 0 ◦C. We
placed 3 g of natural snow inside the cylindrical container, and using the pipette, we carried
out successive additions of 0.04 mL each of the colored solution every 5 s. Simultaneously,
we acquired a video by using a smartphone to monitor the evolution of the snow-solution
mixture at the bottom of the container.

RS were collected with portable Raman equipment BW&TEK (Plainsboro, NJ, USA)
Exemplar Plus model (wavelength range 532–680 nm; slit width 10 µm, diffraction grating
1800 lines mm−1, resolution 2 cm−1). All spectra were acquired at the fixed laser wavelength
532 nm and laser power of 50 mW, with an acquisition time of 15 s. We used a BAC102
Raman probe (BW&TEK, Plainsboro, NJ, USA) that operates in backscattering. The focal
plane is located at a distance of 5.4 mm from the probe. The diameter of the laser spot at
the focal plane is 85 µm.

The Raman probe was placed upward toward the center of the circular bottom side of
the container closed with the PE film (Figure 5). We adjusted the probe-container distance
in such a way that the focal plane was located within the snow volume far enough from
the PE film to facilitate negligible PE contributions to the RS. We estimate that the diameter
of the laser spot at the internal surface of PE film was between 0.2 and 0.4 mm.
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5. Conclusions

In conclusion, we proved that Raman spectroscopy is a powerful technique to assess
the presence of liquid phase in snow. We performed a demonstrative study analyzing in
the laboratory qualitatively different kinds of snow, representative of the two extremes of
freshly deposited, fine-grained snow characteristic of early winter snowfalls (NLS) and of
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coarse-grained snow typical of aged layers in a snowpack (NS). We observed two definite
discontinuities in the trend of the c coefficient vs. time. These are associated with different
degrees of snow impregnation with water. The percolation kinetics are different in the
two kinds of snow. Raman spectroscopy is appreciable because the instrumentation is
light, easy to carry on the field and affordable. The measurements are fast and scarcely
invasive. By data analysis procedures, the collected spectra can be processed to easily
remove spectral contributions from impurities accidentally present in the snowpack.
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