Recently, the introduction of electric vehicles has given rise to a new paradigm in the transportation field, spurring the public transport service in the direction of using completely electric bus fleets. In this context, one of the main challenges is that of guaranteeing an optimal scheduling of the charging process, while reducing the power supply requested from the main grid, and improving the efficiency of the resource allocation. Therefore, in this paper, a power allocation strategy is proposed in order to optimize the charging of electric bus fleets, while fulfilling the limitation imposed on the maximum available power, as well as ensuring limited charging times. Specifically, relying on real bus charging scenarios, a charging optimization algorithm based on a Nonlinear Additive Increase Multiplicative Decrease (NAIMD) strategy is proposed and discussed. This approach is designed on the basis of real charging power curves related to the batteries of the considered vehicles. Moreover, the adopted NAIMD algorithm allows us to minimize the sum of charging times in the presence of saturation constraints in a distributed way and with a small amount of aggregated data sent over the communication network. Finally, an extensive simulation campaign is illustrated, showing the effectiveness of the proposed approach both in allocating the power resources and in sizing the maximum power capacity of charging plants in progress.

Distributed nonlinear AIMD algorithms for electric bus charging plants

Incremona, Gian Paolo;Colaneri, Patrizio;
2021-01-01

Abstract

Recently, the introduction of electric vehicles has given rise to a new paradigm in the transportation field, spurring the public transport service in the direction of using completely electric bus fleets. In this context, one of the main challenges is that of guaranteeing an optimal scheduling of the charging process, while reducing the power supply requested from the main grid, and improving the efficiency of the resource allocation. Therefore, in this paper, a power allocation strategy is proposed in order to optimize the charging of electric bus fleets, while fulfilling the limitation imposed on the maximum available power, as well as ensuring limited charging times. Specifically, relying on real bus charging scenarios, a charging optimization algorithm based on a Nonlinear Additive Increase Multiplicative Decrease (NAIMD) strategy is proposed and discussed. This approach is designed on the basis of real charging power curves related to the batteries of the considered vehicles. Moreover, the adopted NAIMD algorithm allows us to minimize the sum of charging times in the presence of saturation constraints in a distributed way and with a small amount of aggregated data sent over the communication network. Finally, an extensive simulation campaign is illustrated, showing the effectiveness of the proposed approach both in allocating the power resources and in sizing the maximum power capacity of charging plants in progress.
2021
AIMD
distributed control
electric vehicles
optimal scheduling
distributed management
File in questo prodotto:
File Dimensione Formato  
naimd_electric_buses_Energies_original.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 3.01 MB
Formato Adobe PDF
3.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1182152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact