
energies

Article

Distributed Nonlinear AIMD Algorithms for Electric Bus
Charging Plants

Matteo Ravasio 1,†, Gian Paolo Incremona 1,*,† , Patrizio Colaneri 1,2,† , Andrea Dolcini 3,† and Piero Moia 3,†

����������
�������

Citation: Ravasio, M.; Incremona,

G.P.; Colaneri, P.; Dolcini, A.; Moia, P.

Distributed Nonlinear AIMD Algorithms

for Electric Bus Charging Plants.

Energies 2021, 14, 4389. https://

doi.org/10.3390/en14154389

Academic Editor: Alberto Cavallo

Received: 25 June 2021

Accepted: 19 July 2021

Published: 21 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci
32, 20133 Milan, Italy; matteo2.ravasio@mail.polimi.it (M.R.); patrizio.colaneri@polimi.it (P.C.)

2 IEIIT-CNR, 20133 Milan, Italy
3 Alstom SESTO, Via Fosse Ardeatine, 120, 20099 Sesto San Giovanni, Italy;

andrea.dolcini@alstomgroup.com (A.D.); piero.moia@alstomgroup.com (P.M.)
* Correspondence: gianpaolo.incremona@polimi.it; Tel.: +39-02-2399-9686
† These authors contributed equally to this work.

Abstract: Recently, the introduction of electric vehicles has given rise to a new paradigm in the
transportation field, spurring the public transport service in the direction of using completely
electric bus fleets. In this context, one of the main challenges is that of guaranteeing an optimal
scheduling of the charging process, while reducing the power supply requested from the main grid,
and improving the efficiency of the resource allocation. Therefore, in this paper, a power allocation
strategy is proposed in order to optimize the charging of electric bus fleets, while fulfilling the
limitation imposed on the maximum available power, as well as ensuring limited charging times.
Specifically, relying on real bus charging scenarios, a charging optimization algorithm based on a
Nonlinear Additive Increase Multiplicative Decrease (NAIMD) strategy is proposed and discussed.
This approach is designed on the basis of real charging power curves related to the batteries of
the considered vehicles. Moreover, the adopted NAIMD algorithm allows us to minimize the sum
of charging times in the presence of saturation constraints in a distributed way and with a small
amount of aggregated data sent over the communication network. Finally, an extensive simulation
campaign is illustrated, showing the effectiveness of the proposed approach both in allocating the
power resources and in sizing the maximum power capacity of charging plants in progress.

Keywords: AIMD; distributed control; electric vehicles; optimal scheduling; distributed management

1. Introduction

In recent years, the development of new means of transportation based on a more
sustainable source of energy rather than fossil fuel has given rise to a new paradigm in
mobility [1]. There is indeed a clear trend towards the realization of electric vehicles (EVs),
which allow us to achieve economical and environmental benefits, in terms of both energy
efficiency and the reduction of carbon emissions.

1.1. Motivation and Objective

Because of the intermittence of the charging process and the need of new architectures
for the power supply, optimal resource allocation strategies are required to address issues
such as power control and loss minimization [2]. Furthermore, the spread of EVs in the
coming years will give rise to a gradual replacement of fuel pumps with electric charging
stations. Hence, the study of new charging infrastructures and technologies capable of
making the charging process faster, while preserving the life of the batteries, is nowadays a
key challenge. Additionally, an optimal coordination between the charging processes needs
to be guaranteed in order to significantly reduce possible negative effects on the main power
grid, while improving the power supply reliability and the resource allocation efficiency
(see, for instance, Ref. [3] for a recent review on the topic). All these aspects therefore
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motivate the present work, so that the main objective is the design of an efficient and
flexible power allocation strategy able to take into account not only the battery dynamics
to improve the charging process but also charging time limits to allow electric bus fleets to
perform their daily service without interruptions.

1.2. Literature Overview

The optimal management of EV charging has been widely investigated in the literature,
where centralized, decentralized or distributed control approaches have been proposed
(see, e.g., [4–14], among many others).

In the centralized schemes, the charging stations collect information about the state
of all the vehicles (e.g., state of charge, arrival time or saturation power of the batteries),
and then transmit them to a central control unit, which provides a suitable scheduling of the
charging process in order to satisfy specific objectives and constraints. In [4], for instance,
an optimization problem is solved to coordinate the choice of EV charging station in the
case of long-distance trips, while reducing the waiting time for charging. In [5], instead,
electric bus fast-charging stations with a stationary energy storage system are considered,
and an optimization problem is solved to achieve the optimal sizes of the energy buffer to
cope with uncertainties on arrival time and state of charge due to different factors such
as actual traffic conditions. In [6], a method to coordinate the charging of EVs and shift
the load demand from the peak period to the valley period is introduced, taking also into
account indicators on different charging demand urgency for ensuring some charging
priority among vehicles. The minimization of the power losses, the mitigation of the risk
associated with the energy trading and the maximization of the operation profits during
the charging process are also investigated, for instance, in [7,8].

As for the decentralized and distributed approaches, the central control system broad-
casts common power references to all radial subsystems, where a suitable charging power
is locally provided to the connected EVs, based on their own internal parameters and
optimization criteria. Among the decentralized control architectures in the literature, in [9],
a strategy to coordinate the EV charging by exploiting the concepts of non-cooperative
and multi evolutionary games is discussed, and a price-based strategy is designed. A de-
centralized EV charging control, based on the augmented Lagrangian method, is instead
proposed in [10] in order to achieve the maximum revenue, while taking into account
the distribution network constraints. Since the uncoordinated charging of large-scale EVs
may cause high load peak of power at rush hours, thus implying a growth in the cost of
electricity, a possible solution, while keeping the same charging infrastructure, is to shift
the peak power demands to off-peak hours, as in [11]. A method based on the use of a
probabilistic transition matrix to update the charging process is adopted in [12]. In [13],
a communication-free droop control approach, which relies on the local measurements of
voltage at the point of connection, is adopted to determine the charging power for the EVs.
In [14], a deep reinforcement learning-based method for the minimization of individual
EV charging costs is proposed.

A recent decentralized solution which does not require any communication or needs
only a small amount of information about the agents is represented by the so-called
Additive Increase Multiplicative Decrease (AIMD) algorithms [15,16]. These are indeed
capable of providing an optimal resource allocation strategy in the presence of saturation
constraints for each user connected to the same infrastructure. AIMD approaches for EV
charging have been proposed in the literature, as in [17–21], among others. For instance,
in [20], a mixed distributed power allocation solution is provided so as to capture the main
advantages of optimal algorithms which minimize either the sum of charging times or the
recharging time for each vehicle. Meanwhile, in [17], a fixed number of vehicles connected
to the network is considered, and in [20], the AIMD algorithm is applied to a coordinate
charging process in a scenario characterized by random energy requirements and a random
number of connecting vehicles. In all these works, the evolution of the charging rate is
assumed to be linear, but in practice, a non-linear charging curve should be considered to
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take into account the real physical behaviour of the system. This also motivates the present
work, where a nonlinear model of the charging process is considered, and an NAIMD
approach is adopted to ensure optimal resource allocation for electric bus charging plants.

1.3. Contributions

This paper proposes an optimal power allocation strategy capable of coordinating the
charging process of an electric bus fleet in a scenario in which the available power provided
by the electric grid is limited. Since increasing the size of the electrical plant to which
the charging spots are connected can be significantly expensive, the management of the
power distribution among the electric vehicles is in fact mandatory. Therefore, the AIMD
algorithm is ideal to solve this problem, also being able to satisfy predefined constraints on
the charging times. Differently from previous works as in [20,21], the proposed algorithm
is designed to reproduce the characteristic power curves of the bus batteries and their
saturation (further details can be found in [22]). The proposal is theoretically discussed
relying on the NAIMD theory in [15] (Chapter 11), and its properties are verified on a
charging scenario based on real data from an existing bus charging plant in Milan, Italy.
Moreover, the effectiveness of the proposal is also exploited to size the maximum power
of a new charging plant in Alessandria, Italy. Specifically, a reverse engineering problem
is solved to find the most suitable minimum grid capacity so as to satisfy predefined
requirements on the charging times of a bus fleet.

1.4. Outline of the Paper

The paper is organized as follows. In Section 2, some preliminaries on classical AIMD
and the adopted NAIMD algorithms are recalled. The description of the charging process
and of the considered vehicles is reported in Section 3. In Section 4, the proposed NAIMD
strategy is introduced and analyzed, while in Section 5, different simulations, carried out
on two different case studies of Italian cities, are illustrated and commented on to assess
the proposal. Some conclusions are finally gathered in Section 6.

2. Methodology and Preliminaries

In this section, some preliminaries on the AIMD algorithm and its nonlinear extension,
i.e., the NAIMD approach, are recalled.

The AIMD algorithm is in fact an efficient distributed approach capable of allocating
the shares of a limited constrained resource among many agents by exploiting the limited
communication among them. While AIDM algorithms were originally applied for con-
gestion avoidance in computer networks [23], by virtue of their scalability and flexibility,
they have been applied even in different contexts, such as that of battery recharging and
power grids, where many users (e.g., EVs as in this paper or distributed generation units)
connected to the same infrastructure have to share a resource (e.g., power). The only
information given to the users is the notification that the available resource has reached its
capacity limit. As a consequence, each agent, locally and independently, can recompute its
power share to fulfil the whole limit.

This conceptual framework is hereafter mathematically formalized, for the readers’
convenience. Specifically, consider a multi-agent system where N ∈ N+ users are connected
to the same architecture and share a resource at time t ∈ R+

0 . Let pi(t) be the share of the
ith user at time t, and P be the maximum available demand of resource such that

N

∑
i=1

pi(t) = P ≤ P , ∀ t ≥ t0 . (1)

According to the AIMD working principle introduced in [15], if at the time instant
t = tk, k ∈ N+

0 , it holds that
P = P , (2)

therefore, a capacity event (CE) occurs, and a share allocation is required.
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2.1. AIMD Algorithm

Relying on the theory introduced in [15] (Chapter 1), the classical AIMD strategy al-
lows such allocation in a completely decentralized way, without requiring any information
about the state of the agents, but only the knowledge of the triggering event provided by
an event detector. More precisely, the classical synchronized AIMD approach consists of two
phases, called Additive Increase (AI) and Multiplicative Decrease (MD), respectively.

Let αi ∈ R+, and βi ∈ (0, 1], with i = 1, . . . , N, be the so-called growth factors and
multiplicative factors, respectively. Then, during the AI phase, the AIMD evolution is
captured by the following linear model, i.e.,

pi(t) = βi pi(tk) + αi(t− tk) , ∀ i = 1, . . . , N , (3)

with tk ≤ t < tk+1. Whenever a CE (2) occurs, instead, the MD phase is activated and all
the users instantaneously decrease their resource share by the factor βi, so that

pi(t+k ) = βi pi(t−k ) , (4)

with pi(t+k ) and pi(t−k ) being the right and left limit of pi(t) in tk. As a consequence,
the dynamics between two CEs is given by

pi(tk+1) = βi pi(τk) + αiTk , (5)

where Tk = tk+1 − tk is the so-called inter-capacity time, and

Tk =
1

∑N
j=1 αj

N

∑
j=1

(1− β j)pj(τk) . (6)

Hence, substituting (6) into (5), it is possible to write the corresponding discrete time
linear system defined at the CEs and captured by

p(tk+1) = Ap(tk) , (7)

where p = [p1, . . . , pN ]
> ∈ RN such that ∑N

i=1 pi = P̄, while the matrix A is given by

A = diag(β) + (1>α)−1α(1− β)> , (8)

with 1 being the vector of all ones, α = [α1, . . . , αN ] ∈ RN and β = [β1, . . . , βN ] ∈ RN .

2.2. NAIMD Algorithm

Intending to design an optimal allocation strategy for the battery charging of EVs,
which is characterized by a nonlinear dynamics (see e.g., [24]), the so-called NAIMD
algorithm naturally applies. Moreover, in order to take into account the physical limit of the
considered batteries, constraints on the shared power by each user are hereafter considered.

Differently from the linear AIMD algorithm, in the case of the NAIMD version,
the increase phase is captured by a nonlinear function, so that the time evolution between
two CEs is given by

pi(t) = fi(pi(tk), t− tk) , ∀ i = 1, . . . , N , (9)

where fi(·, ·) is a function of the share and of time, and p(t) ∈ P with

P ,
{

p ∈ RN | p
i
≤ pi ≤ pi

}
, (10)

and p
i
and pi being the lower and upper bounds, respectively. Let now G be any continuous

and strictly increasing function defined in P , called the capacity function. Analogously to
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the linear AIMD approach, each user increases its share until the total available capacity is
achieved, i.e., a CE occurs at t = tk, if

G(p1(tk), . . . , pN(tk)) = P . (11)

Therefore, the users are notified that the maximum capacity has been reached and
they reduce the share according to (4). The corresponding dynamics at the CEs is instead
given by

pi(tk+1) = fi(pi(tk), Tk) , ∀ i = 1, . . . , N , (12)

where Tk is the kth inter-capacity time. Letting F(p, t− tk) = [ f1(p1, t− tk), . . . , fN(pN , t−
tk)]
>, the NAIMD discrete dynamics at the CEs is then modeled as

p(tk+1) = F(p(tk), Tk) (13)

with F(p, 0) being the vector-valued function of the share at t = tk, ∀ k ∈ N+
0 .

3. Charging Process and Bus Characteristics

In order to formulate the power allocation problem for charging electric bus fleets in a
public scenario, it is instrumental to define the functional roles and characteristics of the
power plant operator, which defines the appropriate charging strategies in advance. More
specifically, in this section, the considered bus fleets and depot characteristics are described.

3.1. Power Plant and Depot Characteristics

The operational schedules of the charging process as well as the power plant features
are hereafter discussed. Typically, two charging concepts can be considered (see, e.g., [25,26]
for further details):

1. charging is executed after the service time when the buses are parked on the shunting
area inside the depot;

2. charging is also possible during the service time, by means of fast-charging spots at
terminal stations.

Specifically, in this work, the first operative mode is deeply analyzed. In fact, since the
depot area realized for bus recharging is limited, it is essential to optimize the available
spaces in order to install the charging spots, as those illustrated in Figure 1.

The amount of spots is in general greater than or equal to the number of the vehicles
so that, when a bus arrives at the depot, it can be directly connected to the electric grid for
recharging. Moreover, differently from charging during service, which is as fast as possible,
the buses at the final depot can be kept contemporarily connected to their spots until their
next daily service.

Therefore, it is crucial to provide the suitable power for the bus charging, while
accounting for the power limit, the time constraints, the number of vehicles and their
residual charge. This role is played by a dedicated supervisory control and data acquisition
(SCADA) tool, which represents the so-called energy management system (EMS). On the
basis of each type of battery fastened on the electric buses and their power characteristic
curves, the EMS has to determine the optimal allocation and charging profile. In particular,
the SCADA tool collects information about the battery state of charge (SOC), energy
consumption during the charging process and the profile associated with the maximum
charging power, and then it generates the correct values of current and voltage as set-points
for the charging spots. Moreover, additional constraints can be imposed on the battery
power in order to avoid phenomena such as overheating of electrical components.
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(a) electric bus (b) charging spot

Power supply

Distribution transformer

560 V, 50 Hz

Voltage rectification

Distribution in DC
750 V DC

Depot charges

Output voltage regulation

Galvanic transform at 12 Hz

Voltage rectification

400-1000 V DC

(c) electric scheme

Figure 1. Charging of electric buses. (a) Example of an electric bus. (b) Charging spot realization.
(c) Electric scheme of the plant.

As for the electric architecture of the charging station, a distribution transformer con-
verts the high-voltage electricity from the main grid to a lower voltage level for household
and commercial use. Then, the AC current is converted by a specific rectifier into a DC
current. As illustrated in Figure 1c, the charging spots are characterized by a DC current
with voltage equal to 750 V. Each depot charger is in turn composed of three elements:
the output voltage regulator converts the DC current into an AC current; then, a galvanic
insulation transformer with ratio 1:1 transfers the charging power to the bus, while isolating
it from the power source; finally, the AC current is converted by a rectifier into a DC current
and then it flows towards the recharge plug, where the bus is connected.

3.2. Bus Characteristics

In order to describe the characteristics of the batteries involved in the charging process,
without loss of generality, consider the curves in Figure 2a,b, where ιi is the input current, pi
is the charging rate with respect to the input voltage vi, and ιi and pi are the corresponding
maximum values. Therefore, the charging process is active until each battery reaches its
maximum energy capacity, namely Ei, so that the corresponding bus can be disconnected.

Each battery has a maximum capacity of 304 kW h, and it is possible to observe that,
during charging, the current is kept constant, while the charging power linearly increases
with respect to the voltage up to the saturation value of 100 kW. Once the saturation value
is reached, the current reduces in order to keep the absorbed power constant till the end of
the charging process. Since the power plant is characterized by a maximum power capacity,
namely P, during this process, the charging rate cannot indefinitely increase, but specific
constraints in terms of power and charging time have to be fulfilled so as to have the sum
of charging rates equal to or smaller than P̄.
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(a) current-voltage (b) power-voltage

(c) current (d) power

(e) voltage (f) SOC

Figure 2. Characteristic curves of the batteries. (a) Current–voltage curve. (b) Power–voltage curve.
(c) Current ιi over time. (d) Power pi over time. (e) Voltage vi over time. (f) SOC over time.

3.3. The Charging Rate Allocation Problem

Consider now a bus depot with N buses connected to the charging spots, and assume,
without loss of generality, that their batteries are identical. We are now in a position
to formulate the charging rate allocation problem. Given the maximum power P of the
charging plant, at each time step, it is required that (1) holds, while fulfilling the power
constraint (10) defined for each vehicle. Moreover, having in mind a public transportation
system, each electric bus has to be recharged only in a specific time interval, defined as
Tci , [ti, ti], after the daily service.

4. The Adopted NAIMD Algorithm

In this paper, to solve the problem previously formulated, we propose an NAIMD
algorithm of the type introduced in Section 2.2.

4.1. Recast of the Battery Model in the NAIMD Framework

In order to design the NAIMD algorithm, the model of the battery represented by the
charging curve in Figure 2d needs to be suitably defined. As mentioned before, such a
curve presents an exponential evolution until the saturation value, and then the power is
kept constant up to the end of the charging process. Hence, to find a simple model of the
charging rate, a polynomial regression is adopted as follows,

pi(t) ≈
n

∑
j=0

cjtj, ∀ i = 1, . . . , N , (14)
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with cj ∈ R being the parameters to determine, for instance, via the Least Square (LS)
method, and n being the order of the selected polynomial.

Letting n = 3 and considering the interval [0, t̄s], with t̄s being the time when the
power saturates, the model of the charging power curve used in this work is captured by

pi(t) ≈
{

c0 + c1t + c2t2 + c3t3, ∀ t < t̄s

pi, ∀ t > t̄s
. (15)

Given the battery model (15), the charging rate allocation problem formulated in
Section 3.3 can be now recast into the NAIMD framework. Specifically, the continuous
dynamics of the charging rate leads to the NAIMD model (9), with

fi(pi(tk), t− tk) =


βi pi(tk) + c1(t− tk)+

+c2(t− tk)
2 + c3(t− tk)

3, pi(t) < pi

pi, pi ≥ pi

, (16)

∀ i = 1, . . . , N, where the coefficients c1, c2 and c3 can be found online by using the
LS method at each CE, as previously mentioned. Specifically, the CE occurs whenever
condition (11) holds, with function G defined as

G(σ1, . . . , σN) , 1>σ , (17)

with σ , [σ1, . . . , σN ]
> ∈ RN a suitable positive vector.

Remark 1 (Implementation practices). Note that, although classical AIMD formulations are
given in a continuous-time framework, a discretization is needed for practical implementation (see
also [20]). Therefore, letting h ∈ N≥0 be the discrete time step, with T being the sampling time, one
can write

pi[h] = pi(t), ∀ t ∈ [hT, (h + 1)T) . (18)

4.2. Minimization of the Sum of Charging Times

Consider that the N buses connected to the charging spots at the time instant h share
the available constant power P̄. Let hci be the time that the ith user takes to complete the
charging, and let E?

i be the total amount of the desired energy to be supplied to user i.
Hence, the minimization of the charging times is achieved by defining the cost function

J(N) =
N

∑
i=1

hci , (19)

and solving the following optimal control problem

min
pi [h]

J(N)

s.t.
hci−1

∑
h=0

pi[h] =
E?

i
T

G(p1[h], . . . , pN [h]) ≤ P̄, ∀ h ≥ 0

p[h] ∈ P , ∀ h ≥ 0,

(20)

where the constraints are those on the desired amount of shared power for each user, that
on the total capacity and the saturation constraints on the charging rate, respectively.

4.3. The Proposed NAIMD Solution

Before introducing the proposed approach, it is worth highlighting that, having in
mind its field implementation, we would like to make the buses communicate with as
little information as possible among each other and to the EMS. Therefore, in this sense,
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a distributed rather than centralized solution is preferred. In the following, according to
the AIMD theory, the EMS receives the current charging rates, and only the aggregated
information about the amount of desired energy E?

i is shared by the vehicles. As depicted
in Figure 3, the EMS sends a flag to the vehicles in order to enable a multiplicative decrease
in the charging rate if a CE occurs, i.e., whenever (1) (equivalently (11)) holds.

EMS

bus 2bus 1

bus 3bus 4

Figure 3. Scheme of the considered NAIMD-based architecture with four buses.

Remark 2 (Centralized counterpart). Note that the optimal centralized solution consists in
allocating the maximum share capacity first to those users which have lower requirements, and in
serving one user at time (see [20] for further details).

Therefore, let p?i be the desired share at the kth CE, such that

p?i (tk) = min{pi(tk) + ηi, p̄i} , (21)

where

ηi :=
N

∑
j=1, j 6=i

(E?
j − E?

i ) . (22)

At the CE, a multiplicative factor is assigned in a deterministic way as follows

βi(tk) =

{
β(1), p?i < pi

β(2), p?i ≥ pi ,
(23)

with β(1) and β(2) such that β(1) < β(2). Therefore, the control strategy can be described
as follows: if the term ηi is positive, the resource demand of the ith bus is relatively low—
hence, a higher share should be assigned; otherwise, when ηi is negative, the resource
demand of ith bus is relatively high—hence, a lower share should be assigned.

Remark 3 (Selection of the decrease factor). Note that other approaches can be applied to select
the values βi(tk), such as that in [18,20], where one can adapt the probabilities assigned to the
choice of β(1) and β(2).

4.4. Convergence Considerations

In this section, the convergence properties of the used NAIMD algorithm, under spe-
cific conditions, are reported. It is worth highlighting that such analysis would offer
practical evidence in the ideal case where the number of connected buses N is kept constant
and they are charged indefinitely over time (see analogous reasoning in [18,20]).

In fact, under these conditions, making reference to model (13) at the CEs, the existence
of a global asymptotic stable equilibrium of the share vector p(tk), namely p?, can be proved.
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To do this, first, it is instrumental to guarantee that at least a CE occurs. Given the capacity
function in (17), if

G(p
1
, . . . , p

N
) <P̄ (24)

G(p
1
, . . . , pi, . . . , p

N
) >P̄, ∀ i = 1, . . . , N (25)

are verified, since G is a continuous function, this implies that there exists pi ∈ P such that
G = P̄—that is, a CE occurs. Secondly, the vector-valued function fi : P × [0, ∞] 7→ R is
assumed to be continuous, non-decreasing with respect to the share and strictly increasing
with respect to time such that each agent can increase its share up to the bound pi, i.e.,

p
i
≤ fi(pi, 0) ≤pi (26)

lim
t→∞

fi(pi, t− tk) ≥pi . (27)

Therefore, these assumptions allow one to prove that there exists a unique time
T(k) such that G( f1(p, T(k), . . . , fN(p, T(k)) = P̄, and there is a strictly increasing time
τi(pi), ∀ pi ∈ P , which is needed for the ith agent to bring its share up to pi, after the
capacity drop from pi to fi(pi, 0). Therefore, [15] (Theorem 11.7) proves that, defining the
equilibrium (p?, T?) for the NAIMD system (13), with T? ≥ 0 being the inter-capacity time
when p? is reached, this solution is unique and the system asymptotically converges to
it as k tends to infinity. However, as it will be clearer in the next section, from a practical
point of view, the used NAIMD algorithm never reaches such equilibrium since a finite
time window is required for charging the vehicles and their number can change over time.
This implies that the strategy has to be reset to take into account the new values of the
energy required by vehicles to be fully charged.

5. Case Studies

In this section, two real case studies of Italian cities are presented to assess the efficacy
of the proposed NAIMD algorithms in the case of the charging of electrical buses.

5.1. Case Study 1: Charging Rate Allocation of an Existing Plant

This case explores the effectiveness of the proposed charging strategy based on an
existing plant in Milan city. The maximum power of the considered plant is 2.5 MW,
and the related charging depot is able to charge up to N = 30 electric buses after their
daily service time. Table 1 reports the arrival time and the corresponding residual energy
for each vehicle in the considered scenario. The batteries of the vehicles are identical and
have the characteristic curves illustrated in Figure 2, with a capacity of 304 kW h, initial
charge level between 0 kW h and 150 kW h (see Table 1) and maximum charging rate equal
to 100 kW. Finally, as for the NAIMD algorithm and the mechanism (23), the decrease
factors βi with i = 1, . . . , N are selected such that β(1) = 0.7 and β(2) = 0.98.

Figure 4 shows the outcomes in terms of charging rates, total power, capacity events
and number of connected buses. As expected, when the sum of shares is smaller than
P̄ = 2.5 MW, the charging rates increase up to the saturation pi = 100 kW following the
characteristic curve of the batteries (CE flag equal to zero). Then, when the sum of the
charging rates is equal to the capacity P̄ = 2.5 MW, a CE takes place (CE flag equal to
1) and each share instantaneously decreases (see, e.g., the close up of the MD phase in
Figure 4) according to its decrease factor selected as in (23). Moreover, whenever a bus is
fully charged and is disconnected from the spot, the associated charging rate is set to zero.
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Table 1. Scenario settings and outcomes in terms of charging times.

Bus i ti (s) Ei(ti) (kW h) ti − ti (h min) ti (h min)

1 1 34.14 3 h 18′ 3 h 18′

2 538 5.6 3 h 35′ 3 h 44′

3 538 109.11 1 h 59′ 2 h 8′

4 784 85.93 2 h 47′ 3 h
5 784 124.737 1 h 50′ 2 h 3′

6 1252 90.47 2 h 10′ 2 h 31′

7 1252 118.51 1 h 54′ 2 h 14′

8 1311 102.58 2 h 3′ 2 h 25′

9 1311 100.27 2 h 4′ 2 h 26′

10 1637 148.54 1 h 35′ 2 h 3′

11 1637 145.03 1 h 38′ 1 h 5′

12 1637 24.04 3 h 24′ 3 h 52′

13 1637 50.82 3 h 28′ 3 h 36′

14 2218 66.62 2 h 59′ 3 h 36′

15 2218 45.24 3 h 12′ 3 h 49′

16 2218 121.80 1 h 52′ 2 h 29′

17 2809 76.50 2 h 53′ 3 h 40′

18 2809 82.67 2 h 49′ 3 h 18′

19 2809 68.85 2 h 57′ 3 h 44′

20 2809 50.66 3 h 8′ 3 h 55′

21 2809 87.33 2 h 14′ 3 h 1′

22 3023 141.22 1 h 40′ 2 h 30′

23 3023 32.51 3 h 19′ 4 h 10′

24 3049 103.74 2 h 3′ 2 h 53′

25 3117 108.50 1 h 59′ 2 h 55′

26 3117 137.10 1 h 43′ 2 h 38′

27 3117 89.24 2 h 11′ 3 h 7′

28 3117 89.70 2 h 11′ 3 h 6′

29 3215 92.32 2 h 9′ 2 h 3′

30 3441 44.60 3 h 9′ 4 h 6′

(a) charging rates (b) MD phase and CE flags

(c) sum of shares (d) connections

Figure 4. Simulation results when P̄ = 2.5 MW and all the batteries have saturation equal to
pi = 100 kW. (a) Time evolution of charging rates. (b) Close up of the MD phase and CEs over
time. (c) Sum of shares and total capacity. (d) Time evolution of the number of connected buses to
be recharged.
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In Table 1, the duration of the charging process for each vehicle and the final time
computed from the first connection time instant are also reported. It can be noticed that the
last bus (i = 23) is charged after 4 h and 10 min, while the average charging time is 2 h and
30 min.

Having in mind the field implementation of the proposal, consider now the case of dif-
ferent saturation limits and reduced power capacities of the plant. Indeed, the EMS can de-
cide to reduce the power limits of some batteries for safety reasons, due to, for instance, the
overheating of their components. Moreover, for economical and efficiency reasons, the max-
imum power of the plant can be also reduced. Therefore, consider pi ∈ {50, 75, 100}kW,
as well as three different values of the maximum capacity, i.e., P̄ ∈ {1, 1.5, 2}MW.

The outcomes are shown in Figure 5, where the time evolution of the charging rate of
each user and the CE flags are illustrated for P̄ ∈ {1, 1.5, 2}MW, respectively. As expected,
the duration of the charging process increases as the maximum capacity P̄ decreases,
and as a consequence, the number of CEs—that is, the communications from the EMS—is
much greater.

(a) charging rates, P̄ = 1 MW (b) MD phase and CE flags, P̄ = 1 MW

(c) charging rates, P̄ = 1.5 MW (d) MD phase and CE flags, P̄ = 1.5 MW

(e) charging rates, P̄ = 2 MW (f) MD phase and CE flags, P̄ = 2 MW

Figure 5. Simulation results in terms of charging rates and CEs when pi ∈ {50, 75, 100}kW, and the
maximum capacity assumes values P̄ ∈ {1, 1.5, 2}MW.

Furthermore, in order to deeply analyze the obtained charging times, for each value of
P̄, 50 simulations with different initial charging conditions randomly generated have been
performed. Table 2 reports the average values of the charging times, namely µct, and of
the duration of the total charging process, µdc. By reducing the maximum available power,
the average charging time increases, and the charging rates reach the maximum capacity
in a time interval that is shorter when P̄ is smaller, with also a greater number of CEs.
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These considerations pave the way for exploiting the proposed approach to suitably size a
charging plant in progress, as discussed in the following.

Table 2. Average of charging times and process duration for P̄ ∈ {1, 1.5, 2}MW over 50 simulations.

P̄ (MW) µct (h min) µdc (h min)

1 5 h 11’ 9 h 44’
1.5 3 h 55’ 7 h 50’
2 3 h 26’ 7 h 1’

5.2. Case Study 2: Sizing of a Bus Charging Plant

Motivated by the previous case study, now, the problem of finding the minimum
adequate grid capacity P̄ while satisfying predefined constraints on the charging times is
considered. The used data and parameters refer to a plant in progress in Alessandria, Italy.

The daily service window (gray slots) and the charging window (white slots) associ-
ated with a real fleet of buses are reported in Table 3.

Table 3. Time slots for the considered charging plant with service time (gray slots) and allowed
charging window (white slots) for each bus.
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Moreover, it is assumed that each bus arrives at the depot and is immediately con-
nected to its charging spot. If the charging process of a bus ends before the related charging
time slot, that bus has to wait for starting its service. The bus fleet consists of 50 vehicles,
whose batteries are of the same type considered in the previous scenario, with two different
saturation levels, i.e., p̄i ∈ {50, 100}. As for the energy request, in the available data of the
scenario, the batteries, which have a very limited time available for charging, have high
initial autonomy. Based on this consideration, batteries, which have only one hour to be
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recharged, have initial energy autonomy equal to 50% of maximum capacity. Batteries with
two, three and four hours available for charging have an initial energy capacity equal to
40%, 30% and 20% of the maximum one, respectively. Finally, batteries that have at least
five hours to complete their charging process have an initial energy level equal to 10% of
the maximum capacity. In addition, it is requested to disconnect vehicles from the charging
spots whenever the 90% of the maximum energy capacity is reached so as to preserve the
life of batteries. As for the adopted NAIMD algorithm, the decrease factors β(1) and β(2),
selected according to (23), are chosen equal to β(1) = 0.7 and β(2) = 0.98, while the best size
of the plant has to be selected among three levels—that is, P̄ ∈ {1, 1.5, 2}MW.

Figure 6 shows the time evolution of the charging rates, and the corresponding
sum of shares in the case of the three different levels of P̄. It can be observed that the
reduction of the whole capacity implies an increase in the CEs, as already highlighted in
the previous case study. As a consequence, the sum of charging times tends to increase
as well. More precisely, the case P̄ = 1 MW is the most critical since some constraints
on the pre-specified charging intervals are violated. Therefore, comparing the other two
cases—that is P̄ = 1.5 MW and P̄ = 2 MW—in terms of sum of charging times (see Table 4),
although the first one can be a good compromise for economical and efficiency reasons,
the best solution is given by the second one. In fact, it guarantees shorter charging times
and a reduced amount of communication due to the smaller number of CEs.

(a) charging rates, P̄ = 1 MW (b) sum of shares, P̄ = 1 MW

(c) charging rates, P̄ = 1.5 MW (d) sum of shares, P̄ = 1.5 MW

(e) charging rates, P̄ = 2 MW (f) sum of shares, P̄ = 2 MW

Figure 6. Simulation results in terms of charging rates and sum of shares in the case of
P̄ ∈ {1, 1.5, 2}MW and charging time slots as in Table 3.
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Table 4. Sum of charging times J and number of CEs in the case of P̄ ∈ {1, 1.5, 2}MW.

P̄ (MW) J (h) # CEs

1 346.77 491
1.5 226.52 74
2 195.12 12

6. Concluding Remarks

In this paper, an innovative approach for the charging of electrical bus fleets has been
designed relying on the so-called AIMD resource allocation strategy. Therefore, taking
into account the nonlinear nature of the charging process dynamics, on the basis of real
data, the battery model has been recast in the framework of an NAIMD method. More
precisely, the so-called decrease phase of the NAIMD algorithms has been designed in
order to enable the minimization of the sum of charging times of all the electric buses,
without requiring full knowledge of the state of charge of each vehicle. In fact, each bus
requires only partial and aggregated information on the energy request of the other vehicles,
while the maximum power availability is monitored by the central SCADA unit in order
to generate the CEs to enable the decrease phase of the shares. Relying on the real case
studies considered in this work, the actual SCADA architectures are able to provide such
information, thus making the proposed approach a promising ready-to-implement solution
for future charging plants.

Moreover, the wide simulation campaign has shown the potentiality of the NAIMD
algorithm in field implementation and its capacity to address the charging problem in
the case of multiple vehicles contemporarily connected to the grid in the presence of a
limited power resource. Finally, given the considerable advantages in terms of scalability
and communication bandwidth, the proposed NAIMD approach can be also used to size
real plants given stricter constraints in terms of charging times and saturation powers of
each electric vehicle. Indeed, another important aspect is the electricity cost associated
with the charging processes. It typically consists of variable and fixed costs. While the
variable ones depend on the energy consumption during charging, the fixed costs strictly
depend on the power capacity of the plant and on the communication network needed
to fulfil the information required by the control strategy. As a consequence, the proposal
has the potential to be particularly adequate for massively large-scale distributed settings,
and because of the small amount of needed information, it is preferable to other solutions.

Future work will be devoted to the development of alternative AIMD solutions, even
of the nonsynchronized type, to take into account different recharging priorities of the
vehicles, directly including additional control objectives such as the minimization of power
losses and the maximization of the operation profits.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Additive Increase
AIMD Additive Increase Multiplicative Decrease
CE Capacity Event
EMS Energy Management System
EV Electric Vehicle
LS Least Square
MD Multiplicative Decrease
NAIMD Nonlinear Additive Increase Multiplicative Decrease
SCADA Supervisory Control And Data Acquisition
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