High-Performance Big Data Analytics (HPDA) applications are characterized by huge volumes of distributed and heterogeneous data that require efficient computation for knowledge extraction and decision making. Designers are moving towards a tight integration of computing systems combining HPC, Cloud, and IoT solutions with artificial intelligence (AI). Matching the application and data requirements with the characteristics of the underlying hardware is a key element to improve the predictions thanks to high performance and better use of resources. We present EVEREST, a novel H2020 project started on October 1, 2020, that aims at developing a holistic environment for the co-design of HPDA applications on heterogeneous, distributed, and secure platforms. EVEREST focuses on programmability issues through a data-driven design approach, the use of hardware-accelerated AI, and an efficient runtime monitoring with virtualization support. In the different stages, EVEREST combines state-of-the-art programming models, emerging communication standards, and novel domain-specific extensions. We describe the EVEREST approach and the use cases that drive our research.

EVEREST: A design environment for extreme-scale big data analytics on heterogeneous platforms

Pilato C.;Ferrandi F.;Palermo G.;
2021

Abstract

High-Performance Big Data Analytics (HPDA) applications are characterized by huge volumes of distributed and heterogeneous data that require efficient computation for knowledge extraction and decision making. Designers are moving towards a tight integration of computing systems combining HPC, Cloud, and IoT solutions with artificial intelligence (AI). Matching the application and data requirements with the characteristics of the underlying hardware is a key element to improve the predictions thanks to high performance and better use of resources. We present EVEREST, a novel H2020 project started on October 1, 2020, that aims at developing a holistic environment for the co-design of HPDA applications on heterogeneous, distributed, and secure platforms. EVEREST focuses on programmability issues through a data-driven design approach, the use of hardware-accelerated AI, and an efficient runtime monitoring with virtualization support. In the different stages, EVEREST combines state-of-the-art programming models, emerging communication standards, and novel domain-specific extensions. We describe the EVEREST approach and the use cases that drive our research.
Proceedings -Design, Automation and Test in Europe, DATE
PROCEEDINGS - DESIGN, AUTOMATION, AND TEST IN EUROPE CONFERENCE AND EXHIBITION
File in questo prodotto:
File Dimensione Formato  
_DATE2021__EVEREST_positional_paper.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 611.14 kB
Formato Adobe PDF
611.14 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1181959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact