We deal with the sharp asymptotic behaviour of eigenvalues of elliptic operators with varying mixed Dirichlet-Neumann boundary conditions. In case of simple eigenvalues, we compute explicitly the constant appearing in front of the expansion's leading term. This allows inferring some remarkable consequences for Aharonov-Bohm eigenvalues when the singular part of the operator has two coalescing poles.

Eigenvalue variation under moving mixed Dirichlet-Neumann boundary conditions and applications

Abatangelo L.;
2020-01-01

Abstract

We deal with the sharp asymptotic behaviour of eigenvalues of elliptic operators with varying mixed Dirichlet-Neumann boundary conditions. In case of simple eigenvalues, we compute explicitly the constant appearing in front of the expansion's leading term. This allows inferring some remarkable consequences for Aharonov-Bohm eigenvalues when the singular part of the operator has two coalescing poles.
2020
Aharonov-Bohm eigenvalues
Asymptotics of eigenvalues
Mixed boundary conditions
File in questo prodotto:
File Dimensione Formato  
11311-1180561_Abatangelo.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 506.03 kB
Formato Adobe PDF
506.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1180561
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact