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Abstract

We deal with the sharp asymptotic behaviour of eigenvalues of elliptic operators with

varying mixed Dirichlet–Neumann boundary conditions. In case of simple eigenvalues, we

compute explicitly the constant appearing in front of the expansion’s leading term. This allows

inferring some remarkable consequences for Aharonov–Bohm eigenvalues when the singular

part of the operator has two coalescing poles.
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ues.

MSC classification. Primary: 35P20; Secondary: 35P15, 35J25.

1 Introduction and main results

The present paper deals with elliptic operators with varying mixed Dirichlet–Neumann boundary
conditions and their spectral stability under varying of the Dirichlet and Neumann boundary
regions. More precisely, we study the behaviour of eigenvalues under a homogeneous Neumann
condition on a portion of the boundary concentrating at a point and a homogeneous Dirichlet
boundary condition on the complement.

Let Ω be a bounded open set in R2
+ := {(x1, x2) ∈ R2 : x2 > 0} having the following properties:

Ω is Lipschitz, (1)

there exists ε0 > 0 such that Γε0 := [−ε0, ε0]× {0} ⊂ ∂Ω. (2)

We consider the eigenvalue problem for the Dirichlet Laplacian on the domain Ω
{
−∆u = λu, in Ω,

u = 0, on ∂Ω.
(3)

We denote by (λj)j≥1 the eigenvalues of Problem (3), arranged in non-decreasing order and counted
with multiplicities.

For each ε ∈ (0, ε0], we also consider the following eigenvalue problem with mixed boundary
conditions: 




−∆u = λu, in Ω,

u = 0, on ∂Ω \ Γε,
∂u
∂ν = 0, on Γε,

(4)
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Figure 1: The mixed boundary condition problem in the domain Ω.

with Γε := [−ε, ε] × {0}, see Figure 1. We denote by (λj(ε))j≥1 the eigenvalues of Problem (4),
arranged in non-decreasing order and counted with multiplicities.

A rigorous weak formulation of the eigenvalue problems described above can be given as follows.
For ε ∈ (0, ε0], we define

Qε =
{
u ∈ H1(Ω) : χ∂Ω\Γε

γ0(u) = 0 in L2(∂Ω)
}
,

where γ0 is the trace operator from H1(Ω) to L2(∂Ω), which is a continuous linear mapping (see for
instance [21, Definition 13.2]) and χ∂Ω\Γε

is the indicator function of ∂Ω \Γε in ∂Ω. Furthermore,
we define the quadratic form q on H1(Ω) by

q(u) :=

∫

Ω

|∇u|2 dx. (5)

Let us denote by q0 the restriction of q to H1
0 (Ω) and by qε the restriction of q to Qε. The sequences

(λj)j≥1 and (λj(ε))j≥1 for ε ∈ (0, ε0] can then be defined by the min-max principle:

λj := min
E⊂H1

0 (Ω) subspace

dim(E)=j

max
u∈E

q(u)

‖u‖2 (6)

and

λj(ε) := min
E⊂Qε subspace

dim(E)=j

max
u∈E

q(u)

‖u‖2 , (7)

where

‖u‖2 =
∫

Ω

u2(x) dx.

Since H1(Ω) is compactly embedded in L2(Ω) (see e.g. [21, Lemma 18.4]), the eigenvalues of q0,
defined by Equation (6), and those of qε, defined by Equation (7), are of finite multiplicity, and
form sequences tending to +∞.

Remark 1.1. Let us fix ε1 and ε2 in (0, ε0] such that ε1 > ε2. Since H1
0 (Ω) ⊂ Qε2 ⊂ Qε1 , the

definitions given by Formulas (6) and (7) immediately imply that λj(ε1) ≤ λj(ε2) ≤ λj for each
integer j ≥ 1. The function (0, ε0] ∋ ε 7→ λj(ε) is therefore non-increasing and bounded by λj for
each integer j ≥ 1.

Remark 1.2. For the sake of simplicity, in the present paper we assume that the domain Ω satisfies
assumption (2), i.e. that ∂Ω is straight in a neighborhood of 0. We observe that, since we are in
dimension 2, this assumption is not restrictive. Indeed, starting from a general sufficiently regular
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domain Ω, a conformal transformation leads us to consider a new domain satisfying (2), see e.g.
[10]. The counterpart is the appearance of a conformal weight in the new eigenvalue problem;
however, if Ω is sufficiently regular, the weighted problem presents no additional difficulties.

The purpose of the present paper is to study the eigenvalue function ε 7→ λj(ε) as ε → 0+.
The continuity of this map as well as some asymptotic expansions were obtained in [12] (see also
Appendix C of the present paper for an alternative proof of some results of [12]). Here we mean
to provide some explicit characterization of the leading terms in the expansion given in [12] and of
the limit profiles arising from blowing-up of eigenfunctions.

Spectral stability and asymptotic expansion of the eigenvalue variation in a somehow comple-
mentary setting were obtained in [3]; indeed, if we consider the eigenvalue problem under homo-
geneous Dirichlet boundary conditions on a vanishing portion of a straight part of the boundary,
Neumann conditions on the complement in the straight part and Dirichlet conditions elsewhere,
by a reflection the problem becomes equivalent to the one studied in [3], i.e. a Dirichlet eigenvalue
problem in a domain with a small segment removed.

Related spectral stability results were discussed in [8, Section 4] for the first eigenvalue under
mixed Dirichlet-Neumann boundary conditions on a smooth bounded domain Ω ⊂ R

N (N ≥ 3),
both for vanishing Dirichlet boundary portion and for vanishing Neumann boundary portion.

We also mention that some regularity results for solutions to second-order elliptic problems
with mixed Dirichlet–Neumann type boundary conditions were obtained in [13, 20], see also the
references therein, whereas asymptotic expansions at Dirichlet-Neumann boundary junctions were
derived in [10].

Let us assume that

λN (i.e. the N -th eigenvalue of q0) is simple. (8)

Let uN be a normalized eigenfunction associated to λN , i.e. uN satisfies





−∆uN = λNuN , in Ω,

uN = 0, on ∂Ω,∫
Ω u

2
N (x) dx = 1.

(9)

It is known (see [12]) that, under assumption (8), the rate of the convergence λεN → λN is strongly
related to the order of vanishing of the Dirichlet eigenfunction uN at 0. Moreover uN has an integer
order of vanishing k ≥ 1 at 0 ∈ ∂Ω and there exists β ∈ R \ {0} such that

r−kuN(r cos t, r sin t) → β sin(kt) as r → 0 in C1,τ ([0, π]) (10)

for any τ ∈ (0, 1), see e.g. [9, Theorem 1.1]. Actually, one can see that β is directly linked to the
norm of the k-th differential of uN at 0. More precisely, if we consider

‖dju(x)‖2 :=

2∑

i1,...,ij=1

∣∣∣∣
∂ju

∂xi1 . . . ∂xij
(x)

∣∣∣∣
2

,

then

β2 =
‖dkuN(0)‖2
(k!)2 2k−1

.

This follows by differentiating the harmonic homogeneous functions βrk sin(kt) and βrk cos(kt)
with respect to x1 and x2 and considering dkuN(0).

Our main results provide sharp asymptotic estimates with explicit coefficients for the eigenvalue
variation λN − λN (ε) as ε → 0+ under assumption (8) (Theorem 1.3), as well as an explicit
representation in elliptic coordinates of the limit blow-up profile for the corresponding eigenfunction
uεN (Theorem 1.4).
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Theorem 1.3. Let Ω be a bounded open set in R2 satisfying (1) and (2). Let N ≥ 1 be such that
the N -th eigenvalue λN of q0 on Ω is simple with associated eigenfunctions having in 0 a zero of
order k with k as in (10). For ε ∈ (0, ε0), let λN (ε) be the N -th eigenvalue of qε on Ω. Then

lim
ε→0+

λN − λN (ε)

ε2k
= β2 kπ

22k−1

(
k − 1⌊
k−1
2

⌋
)2

with β 6= 0 being as in (9)–(10).

Theorem 1.4. Let Ω be a bounded open set in R2 satisfying (1) and (2). Let N ≥ 1 be such that
the N -th eigenvalue λN of q0 on Ω is simple with associated eigenfunctions having in 0 a zero of
order k with k as in (10). For ε ∈ [0, ε0), let λN (ε) be the N -th eigenvalue of qε on Ω and uεN be
an associated eigenfunction satisfying

∫
Ω
|uεN |2 dx = 1 and

∫
Ω
uεN uN dx ≥ 0. Then

ε−kuεN (εx) → β(ψk +Wk ◦ F−1) as ε→ 0+

in H1
loc(R

2
+), a.e. and in C2

loc(R
2
+ \ {(1, 0), (−1, 0)}), where β is as in (9)–(10),

ψk(r cos t, r sin t) = rk sin(kt), for t ∈ [0, π] and r > 0, (11)

F (ξ, η) = (cosh(ξ) cos(η), sinh(ξ) sin(η)), for ξ ≥ 0, η ∈ [0, 2π), (12)

and

Wk(ξ, η) =
1

2k−1

⌊ k−1

2 ⌋∑

j=0

(
k

j

)
exp(−(k − 2j)ξ) sin((k − 2j)η). (13)

Actually, the fact that limε→0+
λN−λN (ε)

ε2k
is finite and different from zero and the convergence of

ε−kuεN (εx) to some nontrivial profile was proved in the paper [12] with a quite implicit description
of the limits (see also Appendix C for an alternative proof). The original contribution of the
present paper relies in the explicit characterization of the leading term of the expansion provided
by [12] and in its applications to Aharonov–Bohm operators, see Section 2. The key tool allowing
us to write explicitly the coefficients of the expansion consists in the use of elliptic coordinates,
which turn out to be more suitable to our problem than radial ones, see Section 3.

2 Applications to Aharonov–Bohm operators

The present work is in part motivated by the study of Aharonov–Bohm eigenvalues. In this section
we describe some applications of Theorem 1.3 to the problem of spectral stability of Aharonov–
Bohm operators with two moving poles, referring to Section 4 for the proofs.

Let us first review some definitions and known results. For any point a = (a1, a2) ∈ R2, we
define the Aharonov–Bohm potential of circulation 1/2 by

Aa(x) =
1

2

( −(x2 − a2)

(x1 − a1)2 + (x2 − a2)2
,

x1 − a1
(x1 − a1)2 + (x2 − a2)2

)
.

Let us consider an open and bounded open set Ω̂ with Lipschitz boundary, such that 0 ∈ Ω̂. For
better readability, we denote byH the complex Hilbert space of complex-valued functions L2(Ω̂,C),
equipped with the scalar product defined, for all u, v ∈ H, by

〈u, v〉 :=
∫

Ω̂

uv dx.

We define, for a ∈ Ω̂,

QAB
a

:=

{
u ∈ H1

0

(
Ω̂,C

)
;

|u|
|x− a| ∈ L2

(
Ω̂
)}

, (14)
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the quadratic form qAB
a

on QAB
a

by

qAB
a

(u) :=

∫

Ω̂

|(i∇+Aa)u|2 dx, (15)

and the sequence of eigenvalues
(
λABj (a)

)
j≥1

by the min-max principle

λABj (a) := min
E⊂QAB

a
subspace

dim(E)=j

max
u∈E

qAB
a

(u)

‖u‖2 . (16)

It follows from the definition in Equation (14) that QAB
a

is compactly embedded in H. The above
eigenvalues are therefore of finite multiplicity and λABj (a) → +∞ as j → +∞.

Remark 2.1. Let us note that, as shown in [16, Lemma 2.1], QAB
a

is the completion of the set of

smooth functions supported in Ω̂ \ {a} for the norm ‖ · ‖a defined by

‖u‖2
a
= ‖u‖2 + qAB

a
(u).

Let us point out that functions in QAB
a

satisfy a Dirichlet boundary condition, which is not the
case in [16]. However, this difference is unimportant for the compact embedding.

Remark 2.2. We could also consider the Friedrichs extension of the differential operator

(i∇+Aa)
∗(i∇+Aa)u = −∆u+ 2iAa · ∇u+ |Aa|2 u

acting on functions u ∈ C∞
c (Ω̂ \ {a},C). As shown for instance in [15, Section I] or [7, Section

2]), this defines a positive and self-adjoint operator with compact resolvent, whose eigenvalues,
counted with multiplicities, are

(
λABj (a)

)
j≥1

. It is called the Aharonov-Bohm operator of pole a

and circulation 1/2.

In recent years, several authors have studied the dependence of eigenvalues on the position of
the pole. It has been established in [7, Theorem 1.1], that the functions a 7→ λABj (a) are continuous

in Ω. In [1, 2], the two first authors obtained the precise rate of convergence λABj (a) → λABj (0)
as a converges to the interior point 0 for simple eigenvalues. In order to state the most complete
result, given in [2, Theorem 1.2], we consider an L2-normalized eigenfunction u0N of qAB0 associated
with the eigenvalue λABN (0). We additionally assume that λABN (0) is simple. From [11, Section 7]
it follows that there exists an odd positive integer k and a non-zero complex number β0 such that,
up to a rotation of the coordinate axes,

r−
k
2 u0N(r cos t, r sin t) → β0e

i t
2 sin

(
k

2
t

)
in C1,τ ([0, 2π],C)

as r → 0+, for all τ ∈ (0, 1). The integer k has a simple geometric interpretation: it is the number
of nodal lines of the function u0N which meet at 0. We say that u0N has a zero of order k/2 in
0. Our coordinate axes are chosen in such a way that one of these nodal lines is tangent to the
positive x1 semi-axis.

Theorem 2.3. Let us define aε := ε(cos(α), sin(α)), with ε > 0. We have, as ε→ 0+,

λABN (aε) = λABN (0)− kπβ2
0

22k−1

(
k − 1⌊
k−1
2

⌋
)2

cos(kα)εk + o
(
εk
)
.

Remark 2.4. The expansion in [1, 2] involves a constant depending on k, defined as the minimal
energy in a Dirichlet-type problem. We compute this constant in Appendix A in order to obtain
the more explicit result in Theorem 2.3.
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Let us now consider, for any ε > 0, an Aharonov-Bohm potential with two poles (ε, 0) and
(−ε, 0), of fluxes respectively 1/2 and −1/2:

Aε := A(ε,0) −A(−ε,0).

As in the case of one pole, we define the vector space QAB
ε by

QAB
ε :=

{
u ∈ H1

0

(
Ω̂,C

)
;

|u|
|x± ε e| ∈ L2

(
Ω̂
)}

, (17)

where e = (1, 0), the quadratic form qABε on QAB
ε by

qABε (u) :=

∫

Ω̂

|(i∇+Aε)u|2 dx, (18)

and the sequence of eigenvalue
(
λABj (ε)

)
j≥1

by the min-max principle

λABj (ε) := min
E⊂QAB

ε subspace

dim(E)=j

max
u∈E

qABε (u)

‖u‖2 . (19)

It follows from [15, Corollary 3.5] that, for any j ≥ 1, λABj (ε) converges to the j-th eigenvalue

of the Laplacian in Ω̂ as ε → 0+. In [4, 3] the authors obtained in some cases a sharp rate of
convergence. In order to state the result, let us introduce some notation. We denote by q̂0 the
quadratic form on H1

0 (Ω̂) defined by Equation (5), replacing Ω with Ω̂, and we denote by
(
λ̂j
)
j≥1

the sequence of eigenvalues defined by Equation (6), replacing Ω with Ω̂ and q with q̂0. We fix

an integer N ≥ 1 and assume that λ̂N is a simple eigenvalue. We denote by ûN an associated
eigenfunction, normalized in L2

(
Ω̂
)
.

Theorem 2.5. [4, Theorem 1.2] If ûN(0) 6= 0, we have, as ε→ 0,

λABN (ε) = λ̂N +
2π

| log(ε)| û
2
N(0) + o

(
1

| log(ε)|

)
.

In the case ûN(0) = 0, it is well known that there exist k ∈ N \ {0}, β̂ ∈ R \ {0} and α ∈ [0, π)
such that

r−kûN (r cos t, r sin t) → β̂ sin (α− kt) in C1,τ ([0, 2π],C)

as r → 0+ for all τ ∈ (0, 1). In particular, there is a nodal line whose tangent makes the angle α/k

with the positive x1 semi-axis. As above we can characterize β̂ as |β̂|2 = ‖dkûN (0)‖2

(k!)2 2k−1 .

Let us assume that
Ω̂ is symmetric with respect to the x1-axis.

Since λ̂N is simple, ûN is either even or odd in the variable x2 and α is either π/2 or 0 accordingly.

Theorem 2.6. [3, Theorem 1.16] If ûN is even in x2, which corresponds to α = π/2, we have, as
ε→ 0+,

λABN (ε) = λ̂N +
kπβ̂2

4k−1

(
k − 1⌊
k−1
2

⌋
)2

ε2k + o
(
ε2k
)
.

Remark 2.7. The statements in [3] contain a constant Ck which we put in a simpler form in
Appendix A, in order to obtain Theorem 2.6.

As a corollary of Theorem 1.3, we prove in Section 4 the following result, which complements
the previous theorem.

Theorem 2.8. If ûN is odd in x2, which corresponds to α = 0, we have, as ε→ 0+,

λABN (ε) = λ̂N − kπβ̂2

4k−1

(
k − 1⌊
k−1
2

⌋
)2

ε2k + o
(
ε2k
)
.

Remark 2.9. As discussed in Section 4, the assumption that λ̂N is simple can be slightly relaxed,
admitting, in some cases, also double eigenvalues.
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3 Sharp asymptotics for the eigenvalue variation

3.1 Related results from the literature

As already mentioned in the introduction, some asymptotic expansions for the eigenvalue variation
λN − λN (ε) were derived in [12]. Let us first recall the results from [12] which are the starting of
our analysis.

Let s := {(x1, x2) ∈ R2 : x2 = 0 and x1 ≥ 1 or x1 ≤ −1}. We denote as Q the completion of

C∞
c (R2

+ \ s) under the norm (
∫
R

2
+

|∇u|2 dx)1/2. From the Hardy type inequality proved in [14] and

a change of gauge, it follows that functions in Q satisfy the Hardy type inequalities

1

4

∫

R
2
+

|ϕ(x)|2
|x− e|2 dx ≤

∫

R
2
+

|∇ϕ(x)|2 dx, for all ϕ ∈ Q, (20)

and
1

4

∫

R
2
+

|ϕ(x)|2
|x+ e|2 dx ≤

∫

R
2
+

|∇ϕ(x)|2 dx, for all ϕ ∈ Q, (21)

where e = (1, 0). Inequalities (20) and (21) allow characterizing Q as the following concrete
functional space:

Q =
{
u ∈ L1

loc(R
2
+) : ∇u ∈ L2(R2

+),
u

|x±e| ∈ L2(R2
+), and u = 0 on s

}
.

We refer to the paper [12], where the following theorem can be found as a particular case of
more general results.

Theorem 3.1 ([12]). Let Ω be a bounded open set in R2 satisfying (1) and (2). Let N ≥ 1 be such
that the N -th eigenvalue λN of q0 on Ω is simple with associated eigenfunction uN having in 0 a
zero of order k with k as in (10). For ε ∈ (0, ε0), let λN (ε) be the N -th eigenvalue of qε on Ω and
uεN be its associated eigenfunction, normalized to satisfy

∫
Ω
|uεN |2 dx = 1 and

∫
Ω
uεN uN dx ≥ 0.

Then, as ε→ 0+,

λN − λN (ε)

ε2k
→ −β2

∫ 1

−1

∂wk
∂x2

wk dx1, (22)

ε−kuεN(εx) → β(ψk + wk) in H1
loc(R

2
+), (23)

with β 6= 0 being as in (9)–(10), ψk being defined in (11), and wk being the unique Q-weak solution
to the problem 




−∆wk = 0, in R2
+,

wk = 0, on s,
∂wk

∂ν = −∂ψk

∂ν , on Γ1.

(24)

Convergence (22) can be obtained combining [12, Equation (4.6)] for simple eigenvalues, [12,
Equation (3.4)] together with [12, Lemma 3.3]. As well, (23) is given by [12, Equation (2.3)],
which is a consequence of [12, Theorem 5.2], [12, Equation (4.10)], [12, Lemma 3.3]. For the sake
of clarity and completeness, we present an alternative proof in Appendix C, which relies on energy
estimates obtained by an Almgren type monotonicity argument and blow-up analysis.

We remark that in [12] the author describes the limit profile wk solving (24) with polar coordi-
nates. On the contrary, our contribution relies essentially on the use of elliptic coordinates in place
of polar ones. This allows us to compute explicitly the right hand side of (22), thus obtaining the
following result.

Proposition 3.2. For any positive integer k,

∫ 1

−1

∂wk
∂x2

wk dx1 = − kπ

22k−1

(
k − 1⌊
k−1
2

⌋
)2
.
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The proof of Proposition 3.2 relies in an explicit construction of the limit profile wk, using a
parametrization of the upper half-plane R2

+ by elliptic coordinates, a finite trigonometric expansion,
and the simplification of a sum involving binomial coefficients.

3.2 Computation of the limit profile wk

Let us first compute wk. By uniqueness, any function in the functional space Q that satisfies all
the conditions of Problem (24) is equal to wk. In order to find such a function, we use the elliptic
coordinates (ξ, η) defined by {

x1 = cosh(ξ) cos(η),

x2 = sinh(ξ) sin(η).
(25)

More precisely, we consider the function F : (ξ, η) 7→ (x1, x1) defined by the equations (25). It is
a C∞ diffeomorphism from D := (0,+∞)× (0, π) to R2

+. We note that F is actually a conformal
mapping. Indeed, if we define the complex variables z := x1 + ix2 and ζ := ξ + iη, we have
z = cosh(ζ), which proves the claim since cosh is an entire function. Let us denote by h(ξ, η) the
scale factor associated with F , expressed in elliptic coordinates. We have

h(ξ, η) =
∣∣cosh′(ζ)

∣∣ = |sinh(ζ)| = |sinh(ξ) cos(η) + i cosh(ξ) sin(η)| =
√
cosh2(ξ)− cos2(η).

For any function u ∈ Q, let us define U := u ◦F . From the fact the F is conformal, it follows that
|∇U | is in L2(D) with ∫

D

|∇U |2 dξdη =

∫

R
2
+

|∇u|2 dx.

We also have
∂u

∂ν
(x) = − 1

h(0, η)

∂U

∂ξ
(0, η) (26)

for any x ∈ Γ1, where η ∈ (0, π) satisfies x = F (0, η) = (cos(η), 0). Furthermore, U is harmonic in
D if, and only if, u is harmonic in R2

+.
We now give an explicit formula for wk ◦ F .

Proposition 3.3. For any positive integer k, wk ◦ F =Wk, where Wk is defined in (13).

Proof. Let us begin by computing the function Ψk := ψk ◦ F . We have ψk(x) = Im
(
zk
)
, so that

Ψk(ξ, η) = Im
(
(cosh(ζ))k

)
, where the complex variables z and ζ are defined as above. Using the

binomial theorem, we find

Ψk(ξ, η) = Im


 1

2k

k∑

j=0

(
k
j

)
e(k−2j)ζ


 =

1

2k

k∑

j=0

(
k
j

)
e(k−2j)ξ sin ((k − 2j)η) .

This can be written

Ψk(ξ, η) =
1

2k−1

⌊ k−1

2 ⌋∑

j=0

(
k
j

)
sinh ((k − 2j)ξ) sin ((k − 2j)η)

by grouping terms of the sum in pairs, starting from opposite extremities. In particular, for all
η ∈ (0, π),

∂Ψk
∂ξ

(0, η) =
1

2k−1

⌊ k−1

2 ⌋∑

j=0

(k − 2j)

(
k
j

)
sin ((k − 2j)η) .

We now define

V (ξ, η) =
1

2k−1

⌊ k−1

2 ⌋∑

j=0

(
k
j

)
e−(k−2j)ξ sin ((k − 2j)η) .
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The function |∇V | is in L2(D) and, for all η ∈ (0, π),

∂V

∂ξ
(0, η) = − 1

2k−1

⌊ k−1

2 ⌋∑

j=0

(k − 2j)

(
k
j

)
sin ((k − 2j)η) .

Additionally, V vanishes on half-lines defined by η = 0 and η = π, which are the lower and upper
boundary of D, respectively, and are mapped to R×{0} \Γ1 by F . It can be checked directly that
V ◦F−1 ∈ Q. Finally, V is harmonic in D, since it is a linear combination of functions of the type
(ξ, η) 7→ e±nξe±inη, which are harmonic. We conclude that V ◦ F−1 is a solution of Problem (24),
and therefore V = wk ◦ F by uniqueness.

Proof of Theorem 1.4. Theorem 1.4 follows combining Theorem 3.1 and Proposition 3.3.

Corollary 3.4. For any positive integer k ≥ 1,

∫ 1

−1

∂wk
∂x2

wk dx2 = − π

22k−1

⌊ k−1

2 ⌋∑

j=0

(k − 2j)

(
k
j

)2

. (27)

Proof. Using (13), a direct computation gives

∇Wk(ξ, η) =
1

2k−1

⌊ k−1

2 ⌋∑

j=0

(k − 2j)

(
k
j

)
e−(k−2j)ξ(− sin ((k − 2j)η) , cos ((k − 2j)η) .

Recalling (26), we perform a standard change of variables in the left-hand side of (27) to elliptic
coordinates and this yields the thesis.

3.3 Simplification of the sum

We now prove the following result.

Lemma 3.5. For every integer k ≥ 1,

⌊ k−1

2 ⌋∑

j=0

(k − 2j)

(
k
j

)2
= k

(
k − 1⌊
k−1
2

⌋
)2
.

Proof. We will use repeatedly the two following properties of binomial coefficients. First, the
Vandermonde identity: for any non-negative integers m, n and r,

r∑

j=0

(
m
j

)(
n

r − j

)
=

(
m+ n
r

)
; (28)

and second, the elementary identity
(
n
r

)
=
n

r

(
n− 1
r − 1

)
(29)

with n and r positive integers.
Let us now fix an integer k ≥ 1. To simplify the notation, we write

s :=

⌊
k − 1

2

⌋
and S :=

s∑

j=0

(k − 2j)

(
k
j

)2
.

Next, we remark that

S = S0 −
2

k
S1 −

2

k
S2,
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with

S0 :=
s∑

j=0

k

(
k
j

)2
, S1 :=

s∑

j=0

j(k − j)

(
k
j

)2
, S2 :=

s∑

j=0

j2
(
k
j

)2
.

Let us compute the previous sums when k = 2p+ 1, with p a non-negative integer. We first have

S0

k
=

1

2

k∑

j=0

(
k
j

)2
=

1

2

(
2k
k

)
,

where the last equality is a special case of identity (28). We then find

S1 =
1

2

k∑

j=0

j

(
k
j

)
(k − j)

(
k

k − j

)
=
k2

2

k−1∑

j=1

(
k − 1
j − 1

)(
k − 1

k − j − 1

)

=
k2

2

k−2∑

ℓ=0

(
k − 1
ℓ

)(
k − 1

k − 2− ℓ

)
=
k2

2

(
2k − 2
k − 2

)

by applying Identity (29) followed by (28). Finally, Identity (29) implies

S2 = k2
p∑

j=1

(
k − 1
j − 1

)2
= k2

p−1∑

ℓ=0

(
k − 1
ℓ

)2

=
k2

2

(
k−1∑

ℓ=0

(
k − 1
ℓ

)2
−
(
k − 1
p

)2)
=
k2

2

(
2k − 2
k − 1

)
− k2

2

(
k − 1
p

)2
.

We obtain

S =
k

2

(
2k
k

)
− k

(
2k − 2
k − 2

)
− k

(
2k − 2
k − 1

)
+ k

(
k − 1
p

)2

=
k

2

(
2k
k

)
− k

(
2k − 1
k − 1

)
+ k

(
k − 1
p

)2
= k

(
k − 1
p

)2

where the second equality follows from Pascal’s identity and the third from Identity (29).
Let us now treat the case k = 2p, with p a positive integer. In a similar way as before, we find

S0 =
k

2




k∑

j=0

(
k
j

)2
−
(
k
p

)2

 =

k

2

(
2k
k

)
− k

2

(
k
p

)2
,

S1 =
1

2




k∑

j=0

j

(
k
j

)
(k − j)

(
k

k − j

)
− p2

(
k
p

)2

 =

k2

2

(
2k − 2
k − 2

)
− k2

8

(
k
p

)2

and

S2 = k2
p−2∑

j=0

(
k − 1
j

)2
=
k2

2



k−1∑

j=0

(
k − 1
j

)2
− 2

(
k − 1
p− 1

)2

 =

k2

2

(
2k − 2
k − 1

)
−k2

(
k − 1
p− 1

)2
.

We finally obtain, after simplifications,

S = k

(
k − 1
p− 1

)2

.

This completes the proof of Lemma 3.5.
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−ε ε

Figure 2: The domain considered for Aharonov–Bohm eigenvalues with collapsing symmetric poles.

3.4 Conclusions

By the results from the preceding subsections, we can now prove Proposition 3.2 and Theorem 1.3.

Proof of Proposition 3.2. It follows from Corollary 3.4 and Lemma 3.5.

Combining the above results, we can now prove our main theorem.

Proof of Theorem 1.3. Theorem 1.3 follows from the combination of Theorem 3.1 and Proposition
3.2.

4 Asymptotic estimates for Aharonov–Bohm eigenvalues

4.1 Symmetry for the Aharonov–Bohm operator

As in Section 2, we assume Ω̂ ⊂ R2 to be a bounded open set with a Lipschitz boundary, such
that 0 ∈ Ω̂. We additionally assume that Ω̂ is symmetric with respect to the x1-axis and that
Ω := Ω̂ ∩ R2

+ also has a Lipschitz boundary.
According to [18, Theorem VIII.15], there exists a unique Friedrichs extension Hε of the

quadratic form qABε , that is to say a self-adjoint operator whose domain D(Hε) is contained in
QAB
ε and which satisfies

〈Hεu, v〉 = qABε (u, v) =

∫

Ω̂

(i∇+Aε)u · (i∇+Aε)v dx for all u, v ∈ D(Hε),

where we are denoting by qABε both the quadratic form defined in (18) and the associated bilinear
form (see Figure 2). We recall in this section the results proved in [3] concerning the properties
of Hε, in particular the effect of the symmetry of the domain on its spectrum. Since most of the
proofs in the present section reduce to a series of standard verifications, we generally only give
an indication of them. We use gauge functions Φε, for ε ∈ (0, ε0], whose existence is guaranteed
by the following result. In the sequel the denote as σ the reflection through the x1-axis, i.e.
σ(x1, x2) = (x1,−x2).

Lemma 4.1. For each ε > 0, there exists a function Φε in C∞ (R2 \ Γε
)
satisfying

(i) Φε ◦ σ = Φε in R2 \ Γε;

11



(ii) |Φε| = 1 in R2 \ Γε;

(iii) (i∇+Aε) Φε = 0 in R2 \ Γε;

(iv) Φε = 1 on (R× {0}) \ Γε and limδ→0+ Φε(t,±δ) = ±i for every t ∈ (−ε, ε).
We define the anti-unitary operatorsKε and Σc by Kεu := Φ2

εu and Σcu := u◦σ. The subspace
D(Hε) ⊂ H is preserved by Kε and Σc. The operators Kε, Σ

c and Hε mutually commute. In
particular, we can define the following subsets

HK,ε := {u ∈ H : Kεu = u};
D(HK,ε) := {u ∈ D(Hε) : Kεu = u}.

The scalar product 〈· , ·〉 gives HK,ε the structure of a real Hilbert space. As suggested by the
notation, we define HK,ε as the restriction of Hε to D(HK,ε). It is a positive self-adjoint operator
on HK,ε of domain D(HK,ε), with compact resolvent. It has the same eigenvalues as Hε, with
the same multiplicities. The fact that K and Σc commute ensures that HK,ε and D(HK,ε) are
Σc-invariant. We can therefore define

Hs
K,ε := {u ∈ HK,ε : Σ

cu = u};
D(Hs

K,ε) := {u ∈ D(HK,ε) : Σ
cu = u};

Ha
K,ε := {u ∈ HK,ε : Σ

cu = −u};
D(Ha

K,ε) := {u ∈ D(HK,ε) : Σ
cu = −u}.

We have the following orthogonal decomposition of HK,ε into spaces of symmetric and antisym-
metric functions:

HK,ε = Hs
K,ε ⊕Ha

K,ε. (30)

We also define Hs
K,ε and Ha

K,ε as the restrictions of HK,ε to D(Hs
K,ε) and D(Ha

K,ε) respectively.
The operatorHs

K,ε is positive and self-adjoint onHs
K,ε of domainD(Hs

K,ε) , with compact resolvent.
Similar conclusions hold for Ha

K,ε. Decomposition (30) implies the following result.

Lemma 4.2. The spectrum of HK,ε is the union of the spectra of Hs
K,ε and Ha

K,ε, counted with
multiplicities.

Remark 4.3. Let us note that we can give an alternative description of the spectra of Hs
K,ε and

Ha
K,ε. One can check that they are the spectra of the quadratic form qABε restricted to QAB

ε ∩Hs
K,ε

and QAB
ε ∩Ha

K,ε respectively. These spectra can therefore be obtained by the min-max principle.

4.2 Isospectrality

In this subsection, we establish an isospectrality result between Aharonov-Bohm eigenvalue prob-
lems with symmetry and Laplacian eigenvalue problems with mixed boundary conditions, in the
spirit of [6].

To this aim, we define an additional family of eigenvalue problems, similar to Problems (3) and
(4). With the notation ∂Ω+ := ∂Ω ∩ R2

+ and ∂Ω0 := ∂Ω ∩ (R × {0}), we consider the eigenvalue
problem 




−∆u = λu, in Ω,

u = 0, on ∂Ω+,
∂u
∂ν = 0, on ∂Ω0.

(31)

We denote by (µj)j≥1 the eigenvalues of Problem (31). We also consider, for each ε ∈ (0, ε0],





−∆u = λu, in Ω,

u = 0, on ∂Ω+ ∪ Γε,
∂u
∂ν = 0, on ∂Ω0 \ Γε,

(32)
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and denote by (µj(ε))j≥1 the corresponding eigenvalues. In order to give a rigorous definitions, we
use a weak formulation. We define

R0 =
{
u ∈ H1(Ω) ; χ∂Ω+

γ0u = 0 in L2(∂Ω)
}
,

and, for ε ∈ (0, ε0],
Rε =

{
u ∈ H1(Ω) ; χ∂Ω+∪Γεγ0u = 0 in L2(∂Ω)

}
.

We denote by r0 and rε the restriction of the quadratic form q, defined in Equation (5), to R0

and Rε respectively. We then define (µj)j≥1 and (µj(ε))j≥1 as, respectively, the eigenvalues of the
quadratic forms r0 and rε; they are obtained by the min-max principle.

Remark 4.4. We can give another interpretation of the eigenvalues (µj)j≥1 and (λj)j≥1. Using

the unitary operator Σ : u 7→ u ◦σ, we obtain a orthogonal decomposition of L2
(
Ω̂
)
into symmetric

and antisymmetric functions:

L2
(
Ω̂
)
= ker (I − Σ)⊕ ker (I +Σ) . (33)

This decomposition is preserved by the action of the Dirichlet Laplacian −∆̂, and we can therefore
define −∆s (resp. −∆a) as the restriction of −∆̂ to symmetric (resp. antisymmetric) functions

in the domain of −∆̂. One can then check that (µj)j≥1 is the spectrum of −∆s and (λj)j≥1 is the
spectrum of −∆a.

It remains to connect the eigenvalues of Problems (32) and (4) to the eigenvalues of Hε. To
this end, we define the following linear operator, which performs a gauge transformation:

Uε : H → L2(Ω,C)

u 7→
√
2Φεu|Ω.

We recall that L2(Ω) denotes the real Hilbert space of real-valued L2 functions in Ω. We have the
following result.

Lemma 4.5. The operator Uε satisfies the following properties:

(i) Uε (HK,ε) ⊂ L2(Ω) and Uε
(
QAB
ε

)
⊂ H1(Ω,C);

(ii) Uε induces a real-unitary bijective map from QAB
ε ∩Hs

K,ε to Rε such that qABε (u) = q (Uεu)

for all u ∈ QAB
ε ∩Hs

K,ε;

(iii) Uε induces a real-unitary bijective map from QAB
ε ∩ Ha

K,ε to Qε such that qABε (u) = q (Uεu)

for all u ∈ QAB
ε ∩Ha

K,ε.

Proof. If u ∈ HK,ε, then u = Φ2
εu, so that Φεu = Φεu, that is to say Φεu is real-valued. This

proves the first half of (i). For the second half, let us assume that u ∈ QAB
ε . Using the definition

of QAB
ε , given in Equation (17), and Property (iii) of Lemma 4.1, we find the following identity,

in the sense of distributions in Ω:

∇
(
Φεu

)
= Φε∇u +∇

(
Φε
)
u = Φε (∇− iAε)u in Ω.

This proves that Φεu|Ω ∈ H1(Ω,C) and that

∫

Ω

|(∇− iAε)u|2 dx =

∫

Ω

∣∣∇
(
Φεu

)∣∣2 dx.

Let us now additionally assume that u ∈ QAB
ε ∩Hs

K,ε. Since Σcu = u, Property (i) of Lemma 4.1

implies that (Φεu) ◦ σ = Φεu. Therefore,
∫

Ω̂

|u|2 dx = 2

∫

Ω

∣∣Φεu
∣∣2 dx =

∫

Ω

|Uεu|2 dx.

13



Furthermore, Property (iv) of Lemma 4.1 and the equation Σcu = u imply that u vanishes on Γε,

hence Uεu ∈ Rε. This implies that Φεu ∈ H1(Ω̂) and

∫

Ω̂

|(∇− iAε)u|2 dx =

∫

Ω̂

∣∣∇
(
Φεu

)∣∣2 dx = 2

∫

Ω

∣∣∇
(
Φεu

)∣∣2 dx =

∫

Ω

|∇ (Uεu)|2 dx.

We conclude that the mapping Uε : QAB
ε ∩ Hs

K,ε → Rε is well-defined, real-unitary, and that

qABε (u) = q (Uεu). To show that the mapping is bijective, we consider the operator Vε defined in

the following way: given v ∈ L2(Ω), we denote by ṽ its extension by symmetry to Ω̂ and we set

Vεv :=
1√
2
Φεṽ.

It can be checked, in a way similar to what has been done for Uε, that Vε induces the inverse of
Uε, from Rε to QABε ∩ Hs

K,ε. This proves (ii). The proof of (iii) is similar, the difference being

that we must check that Φεu vanishes on (R× {0}) \ Γε when u ∈ QABε ∩Ha
K,ε.

Corollary 4.6. The spectra of Hs
K,ε and Ha

K,ε are (µj(ε))j≥1 and (λj(ε))j≥1 respectively.

4.3 Eigenvalues variations

Let us first state some auxiliary results, which we prove in Appendix B.

Proposition 4.7. For all N ∈ N∗, µN (ε) → µN as ε→ 0.

Proposition 4.8. Let µN be a simple eigenvalue of −∆s (see Remark 4.4) and uN be an associated

eigenfunction, normalized in L2
(
Ω̂
)
. If uN (0) 6= 0, then

µN (ε) = µN +
2π

| log(ε)|u
2
N (0) + o

(
1

| log(ε)|

)
as ε→ 0.

If
r−kuN (r cos t, r sin t) → β̂ cos (kt) in C1,τ ([0, π],R)

as r → 0+ for all τ ∈ (0, 1), with k ∈ N∗ and β̂ ∈ R \ {0}, then

µN (ε) = µN +
kπβ̂2

4k−1

(
k − 1⌊
k−1
2

⌋
)2

ε2k + o
(
ε2k
)

as ε→ 0.

We now prove Theorem 2.8. Since ûN is odd in x2, λ̂N belongs to the spectrum of −∆a. Since
λ̂N is simple, it does not belong to the spectrum of −∆s, according to the orthogonal decomposition
(33). It follows from Remark 4.4 that there exists K ∈ N∗ such that λ̂N = λK and that λK is a
simple eigenvalue of q0 in Ω. By continuity, λK(ε) → λK as ε→ 0+.

From Corollary 4.6, Proposition 4.7 and the fact that λ̂N is simple, it follows that there exists
ε1 > 0 such that λABN (ε) = λK(ε) for every ε ∈ (0, ε1). The conclusion of Theorem 2.8 follows from
Theorem 1.3, using the fact that λK is simple. Let us note that the eigenfunction ûN in Theorem
2.8 is normalized in L2

(
Ω̂
)
, while the eigenfunction uN in Theorem 1.3 is normalized in L2

(
Ω
)
.

We therefore have to apply Theorem 1.3 with β =
√
2 β̂ to obtain the correct result.

We can use the results of the preceding sections to study some multiple eigenvalues. Let λ̂N
be an eigenvalue of −∆ on Ω̂, possibly multiple. We define

N0 := min
{
M ∈ N

∗ ; λ̂M = λ̂N

}
and N1 := max

{
M ∈ N

∗ ; λ̂M = λ̂N

}
.

According to Remark 4.4, there exists K ∈ N∗ such that λ̂N = λK or there exists L ∈ N∗ such
that λ̂N = µL.
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Proposition 4.9. Let us assume that λ̂N = λK with K ∈ N∗ and that λK is a simple eigenvalue
of q0. Let us denote by uK an associated normalized eigenfunction for q0, and let us assume that

r−kuK(r cos t, r sin t) → β sin (kt) in C1,τ ([0, π],R)

as r → 0+ for all τ ∈ (0, 1), with k ∈ N
∗ and β ∈ R \ {0}. Then

λABN0
(ε) = λ̂N − kπβ2

22k−1

(
k − 1⌊
k−1
2

⌋
)2

ε2k + o
(
ε2k
)

as ε→ 0.

Proof. Let us set m := N1 −N0 + 1, the multiplicity of λ̂N . If m = 1, the conclusion follows from
Theorem 2.8. We therefore assume m ≥ 2 in the rest of the proof. Remark 4.4 and the fact that
λK is simple imply that there exists L ∈ N∗ such that µL = µL+1 = · · · = µL+m−2 = λ̂N . From
Proposition 4.7, we deduce that there exists ε1 > 0 such that, for every ε ∈ (0, ε1),

{
λABN0

(ε);λABN0+1(ε), . . . , λ
AB
N1

(ε)
}
= {λK(ε), µL(ε), . . . , µL+m−2(ε)} .

The function ε 7→ λK(ε) is non-increasing, and the function ε 7→ µj(ε) is non-decreasing for every

j ∈ {L, . . . , L+m− 2}, therefore µj(ε) ≥ µj = λ̂N = λK ≥ λK(ε). In particular λABN0
(ε) = λK(ε)

for every ε ∈ (0, ε1). The conclusion follows from Theorem 1.3.

Proposition 4.10. Let us assume that λ̂N = µL with L ∈ N∗ and that µL is a simple eigenvalue of
−∆s. Let us denote by uL an associated eigenfunction for −∆s, normalized in L2(Ω̂). If uL(0) 6= 0,
then

λABN1
(ε) = λ̂N +

2π

| log(ε)|u
2
L(0) + o

(
1

| log(ε)|

)
as ε→ 0.

If
r−kuL(r cos t, r sin t) → β̂ cos (kt) in C1,τ ([0, π],R)

as r → 0+ for all τ ∈ (0, 1), with k ∈ N∗ and β̂ ∈ R \ {0}, then

λABN1
(ε) = λ̂N +

kπβ̂2

4k−1

(
k − 1⌊
k−1
2

⌋
)2

ε2k + o
(
ε2k
)

as ε→ 0.

Proof. In a similar way as in the proof of Proposition 4.9, we show that there exists ε1 > 0 such
that, for every ε ∈ (0, ε1), λ

AB
N1

(ε) = µL(ε). The conclusion then follows from Proposition 4.8.

4.4 Example: the square

As an application of the preceding results, let us study the first four eigenvalues of the Dirichlet
Laplacian for the square

Ω̂ :=
(
−π
2
,
π

2

)2
. (34)

The open set Ω̂ is symmetric with respect to the x1-axis. We define Ω := Ω̂ ∩ R2
+. We denote

by (λ̂j)j≥1 the eigenvalues of the Dirichlet Laplacian on the square Ω̂ and, for ε ∈ (0, π/2), we
consider the Aharonov-Bohm eigenvalues

(
λABj (ε)

)
j≥1

defined in Section 2.

It is well known that the eigenvalues of the Dirichlet Laplacian on Ω̂ are

λ̂m,n := m2 + n2,

with m and n positive integers, and that an associated orthonormal family of eigenfunctions is
given by

um,n(x1, x2) =
2

π
fm(x1)fn(x2),

where

fk(x) =

{
sin(kx), if k is even,

cos(kx), if k is odd.
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Proposition 4.11. Let us assume that λ̂N is simple. Then λ̂N = λ̂m,m = 2m2 for some positive

integer m, and λ̂N cannot be written in any other way as a sum of squares of positive integers.
Then we have, as ε→ 0+,

λABN (ε) = λ̂N +
8

π| log(ε)| + o

(
1

| log(ε)|

)

if m is odd and

λABN (ε) = λ̂N − m4

2π
ε4 + o

(
ε4
)

if m is even.

Proof. In the case where m is odd, an associated eigenfunction, normalized in L2(Ω̂), is

um,m(x1, x2) =
2

π
cos(mx1) cos(mx2).

The first asymptotic expansion then follows from Theorem 2.5.
In the case where m is even, an associated eigenfunction, normalized in L2(Ω̂), is

um,m(x1, x2) =
2

π
sin(mx1) sin(mx2).

Then λ̂N = λK , where λK is a simple eigenvalue of q0. Furthermore,

r−2um,m(r cos t, r sin t) →
m2

π
sin (2t) in C1,τ ([0, π],R)

as r → 0+ for all τ ∈ (0, 1). An application of Proposition 4.9, taking care of normalizing in L2(Ω),
gives the second asymptotic expansion.

Proposition 4.12. Assume that λ̂N = λ̂m,n = m2 + n2 with m even and n odd, and that λ̂N has
no other representation as a sum of two squares of positive integers, up to the exchange of m and
n. Then λ̂N has multiplicity two; up to replacing N with N − 1, we can assume that λ̂N = λ̂N+1.
Then, as ε→ 0+,

λABN (ε) = λ̂N − 4m2

π
ε2 + o

(
ε2
)
;

λABN+1(ε) = λ̂N +
4m2

π
ε2 + o

(
ε2
)
.

Proof. The associated eigenfunctions

um,n(x1, x2) =
2

π
sin(mx1) cos(nx2)

and

un,m(x1, x2) =
2

π
cos(nx1) sin(mx2)

are normalized in L2(Ω̂) and respectively symmetric and antisymmetric in the variable x2. It

follows that λ̂N = µL = λK , where µL is a simple eigenvalue of r0 and λK a simple eigenvalue of
q0. Furthermore,

r−1um,n(r cos t, r sin t) →
2m

π
cos (t) in C1,τ ([0, π],R)

and

r−1un,m(r cos t, r sin t) →
2m

π
sin (t) in C1,τ ([0, π],R)

as r → 0+ for all τ ∈ (0, 1). The asymptotic expansions then follow from Propositions 4.10 and
4.9
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Remark 4.13. We note that if λ̂N is even, in any representation λ̂N = m2+n2, m and n have the
same parity. Therefore, if n 6= m, λ̂N cannot be a simple eigenvalue either of r0 or of q0. On the
other hand, if λ̂N is odd, in any representation λ̂N = m2 + n2, m and n have the opposite parity.
Therefore, as soon as λ̂N can be written in at least two different ways as the sum of two squares,
λ̂N cannot be a simple eigenvalue either of r0 or of q0. The cases described in Propositions 4.11
and 4.12 are thus the only ones in which we can apply the results of Section 4.3 for the square.

The first four eigenvalues of the Dirichlet Laplacian on the square Ω̂ satisfy the assumptions
of either Proposition 4.11 or Proposition 4.12, so we can apply the previous results to derive the
following asymptotic expansions of the Aharonov-Bohm eigenvalues λABj (ε) for j = 1, 2, 3, 4.

Corollary 4.14. Let λABj (ε) be the Aharonov-Bohm eigenvalues defined in (18)–(19) with Ω̂ being
the square defined in (34). Then we have, as ε→ 0+,

λAB1 (ε) = 2 +
8

π

1

| log(ε)| + o

(
1

| log(ε)|

)
;

λAB2 (ε) = 5− 16

π
ε2 + o

(
ε2
)
;

λAB3 (ε) = 5 +
16

π
ε2 + o

(
ε2
)
;

λAB4 (ε) = 8− 8

π
ε4 + o

(
ε4
)
.

4.5 Example: the disk

Let (r, t) ∈ [0, 1]× [0, 2π) be the polar coordinates of the disk. It is well known that the eigenvalues
of the Dirichlet Laplacian on the disk are given by the sequences

{j20,k}k≥1 ∪ {j2n,k}n,k≥1,

where jn,k denotes the k-th zero of the Bessel function Jn for n ≥ 0, k ≥ 1. We recall that
jn,k = jn′,k′ if, and only if, n = n′ and k = k′ (see [22, Section 15.28]). The first set is therefore
made of simple eigenvalues; their eigenfunctions are given by the Bessel functions

u0,k(r cos t, r sin t) :=
√

1
π

1
|J′

0
(j0,k)|J0(j0,kr) for k ≥ 1. (35)

The second set is made of double eigenvalues whose eigenfunctions are spanned by

usn,k(r cos t, r sin t) :=
√

2
π

1
|J′

n(jn,k)|Jn(jn,kr) cosnt, (36)

uan,k(r cos t, r sin t) :=
√

2
π

1
|J′

n(jn,k)|Jn(jn,kr) sinnt, (37)

for n, k ≥ 1. We stress that these eigenfunctions have L2-norm equal to 1 on the disk. It is
convenient to recall (see [22, Chapter III]) that for any n ∈ N ∪ {0}

Jn(z) =

+∞∑

k=0

(−1)k(12z)
n+2k

k! Γ(n+ k + 1)
. (38)

We denote by
(
λ̂j
)
j≥1

the eigenvalues of the Dirichlet Laplacian on the disk

D1 = {(x1, x2) ∈ R
2 : x21 + x22 < 1}

and, for ε ∈ (0, 1/2), we consider the Aharonov-Bohm eigenvalues
(
λABj (ε)

)
j≥1

defined in Section 2.
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Proposition 4.15. If λ̂N is simple, there exists an integer k ≥ 1 such that λ̂N = j20,k. Then

λABN (ε) = j20,k +
2

|J ′
0(j0,k)|2

1

| log(ε)| + o

(
1

| log(ε)|

)
(39)

as ε → 0+. If λ̂N is double, there exist integers n ≥ 1 and k ≥ 1 such that λ̂N = j2n,k. Up to

replacing N by N − 1, we can assume that λ̂N = λ̂N+1. Then, as ε→ 0+,

λABN (ε) = j2n,k −
2nj2nn,k

(n!)242n−1|J ′
n(jn,k)|2

(
n− 1⌊
n−1
2

⌋
)2
ε2n + o

(
ε2n
)
, (40)

λABN+1(ε) = j2n,k +
2nj2nn,k

(n!)242n−1|J ′
n(jn,k)|2

(
n− 1⌊
n−1
2

⌋
)2
ε2n + o

(
ε2n
)
. (41)

Proof. We first consider the case where the eigenvalue λ̂N = j20,k is simple; then an associated
eigenfunction, normalized in the disk, is u0,k defined by Equation (35). It follows from Equation
(38) that

u0,k(0) =

√
1

π

1

|J ′
0(j0,k)|

> 0.

Theorem 2.5 gives us the asymptotic expansion (39).

We then consider the case where λ̂N is double, with λ̂N = λ̂N+1 = j2n,k, n, k ≥ 1. We note

that j2n,k is a simple eigenvalue of q0, and that the restriction of
√
2uan,k to the upper half-disk is

an associated normalized eigenfunction. It follows from Equation (38) that

r−nuan,k(r cos t, r sin t) →
√

2

π

1

|J ′
n(jn,k)|

1

Γ(n+ 1)

(
jn,k
2

)n
sinnt in C1,τ ([0, π],R)

as r → 0+. The asymptotic expansion (40) then follows from Proposition 4.9. In a similar way,
j2n,k is a simple eigenvalue of −∆s, and usn,k is an associated normalized eigenfunction. It follows
from Equation (38) that

r−nusn,k(r cos t, r sin t) →
√

2

π

1

|J ′
n(jn,k)|

1

Γ(n+ 1)

(
jn,k
2

)n
cosnt in C1,τ ([0, π],R)

as r → 0+. The asymptotic expansion (41) then follows from the second case of Proposition
4.10.

Additionally, there exist relations between the zeros of Bessel functions (to this aim we refer
to [22, Chapter XV.22]): in particular, the positive zeros of the Bessel function Jn are interlaced
with those of the Bessel function Jn+1 and by Porter’s Theorem there is an odd number of zeros
of Jn+2 between two consecutive zeros of Jn. Then, we have,

0 < j0,1 < j1,1 < j2,1 < j0,2 < j1,2 < . . .

and hence, since j3,1 > j2,1, the first three zeros of Bessel functions are, in order,

0 < j0,1 < j1,1 < j2,1.

Combining this information with Proposition 4.15, we find for example the following asymptotic
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expansions for the first few Aharonov-Bohm eigenvalues λABj (ε) on the disk D1 as ε→ 0+:

λAB1 (ε) = j20,1 +
2

|J ′
0(j0,1)|2

1

| log(ε)| + o

(
1

| log(ε)|

)
,

λAB2 (ε) = j21,1 −
1

2

j21,1
|J ′

1(j1,1)|2
ε2 + o(ε2),

λAB3 (ε) = j21,1 +
1

2

j21,1
|J ′

1(j1,1)|2
ε2 + o(ε2),

λAB4 (ε) = j22,1 −
1

64

j42,1
|J ′

2(j2,1)|2
ε4 + o(ε4),

λAB5 (ε) = j22,1 +
1

64

j42,1
|J ′

2(j2,1)|2
ε4 + o(ε4).

A Computation of the constants

A.1 The Neumann-Dirichlet case

In the present section, we use the above results to compute the quantities appearing in [1, Section
4]. In order to avoid a conflict of notation with the present paper, for any odd positive integer k,
we denote here by ψ′

k, m
′
k and w′

k what is denoted in [1] by ψk, mk and wk respectively.
As in [1], we use the notation

s0 := {(x′1, 0) ; x′1 ≥ 0} ;

and
s := {(x′1, 0) ; x′1 ≥ 1} .

We now define the mapping G : R2
+ → R

2 \ s0 by

G(x) := (x21 − x22, 2x1x2).

The mapping is conformal; indeed, if for x ∈ R2
+ we write z := x1 + ix2 and z′ := x′1 + ix′2, with

x′ = (x′1, x
′
2) := G(x), we have z′ = z2. The scale factor associated with G is h(x) = 2|z| = 2|x|.

Let u′ be a function in H1
(
R2 \ s0

)
and u := u′ ◦ G. Since G is conformal, |∇u| is in L2

(
R2

+

)
,

with ∫

R
2
+

|∇u|2 dx =

∫

R2\s0
|∇u′|2 dx′.

Furthermore, for any x′ in the segment (0, 1)× {0}, which we write as x′ = (x′1, 0), we have

∂u′

∂ν+
(x′) = − 1

2
√
x′1

∂u

∂x2

(√
x′1, 0

)
and

∂u′

∂ν−
(x′) = − 1

2
√
x′1

∂u

∂x2

(
−
√
x′1, 0

)
,

where ∂u′

∂ν+
(x′) and ∂u′

∂ν−
(x′) denote the normal derivative at x′ respectively from above and from

below. We also note that u is harmonic in R2
+ if, and only if, u′ is harmonic in R2 \ s0.

Let us now denote by w̃′
k the extension by reflexion to R2 \ s0 of w′

k, originally defined on R2
+.

We recall that w′
k is the unique finite energy solution to the problem





−∆w′
k = 0, in R2

+,

w′
k = 0, on s,

∂w′

k

∂ν = −∂ψ′

k

∂ν , on ∂R2
+ \ s,

where ψ′
k(r cos t, r sin t) = rk/2 sin

(
k
2 t
)
.
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Lemma A.1. For any odd positive integer k, wk = w̃′
k ◦G.

Proof. Let us write v := w̃′
k ◦ G. By uniqueness, it is enough to prove that v solves (24). From

the remarks at the beginning of the present section, it follows that v is harmonic in R2
+. Let

us now show that ψk := ψ′
k ◦ G. Indeed, for x′ ∈ R2 \ s0, ψ′

k(x
′) = Im

(
(z′)k/2

)
, and therefore

f(x) = Im
(
(z2)k/2

)
= Im

(
zk
)
= ψk(x), where x

′ = G(x), z and z′ are defined as above, and
where we use the determination of the square root on C \ s0 defined by G−1. From this and the
previous remarks, it follows that v satisfies the boundary conditions of Problem (24).

As in [1] we define

m
′
k = −1

2

∫

R
2
+

|∇w′
k|

2
dx

and

mk = −1

2

∫

R
2
+

|∇wk|2 dx. (42)

We note that the right hand side of (22) is equal to −2β2
mk.

Corollary A.2. For any odd positive integer k, m′
k = 1

2mk.

Proof. We have

m
′
k = −1

2

∫

R
2
+

|∇w′
k|

2
dx′ = −1

4

∫

R2\s0
|∇w̃′

k|
2
dx′.

Using Lemma A.1 and the conformal invariance of the L2-norm of the gradient, we find

∫

R2\s0
|∇w̃′

k|
2
dx′ =

∫

R
2
+

|∇wk|2 dx = −2mk.

In particular, Corollary A.2 and Proposition 3.2 imply that

m
′
k = − kπ

4 22k−1

(
k − 1⌊
k−1
2

⌋
)2
,

thus proving, in view of [1, Theorem 1.2], the explicit constant appearing in the asymptotic ex-
pansion of Theorem 2.3.

A.2 The u-capacities of segments

In this last section, we simplify the constant Ck occurring in [3, Lemma 2.3].

Proposition A.3. For any positive integer k,

Ck =
k

4k−1

(
k − 1⌊
k−1
2

⌋
)2

.

Proof. According to Equation (22) in [3, Lemma 2.3],

Ck =

k∑

j=1

j |Aj,k|2 ,

where Aj,k is the j-th cosine Fourier coefficient of the function η 7→ (cos η)k. To be more explicit,
let us expand (cos η)k into a trigonometric polynomial. We write

(cos η)k =

(
eiη + e−iη

2

)k
=

1

2k

k∑

j=0

(
k
j

)
e(k−2j)iη .
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By grouping the terms of the sum in pairs starting from opposite extremities, we find

(cos η)k =
1

2k−1

⌊ k−1

2 ⌋∑

j=0

(
k
j

)
cos((k − 2j)η) + ck

where

ck = 0 if k = 2p+ 1 and ck =
1

2k

(
k
p

)
if k = 2p.

It follows that

Ck =
1

4k−1

⌊k−1

2 ⌋∑

j=0

(k − 2j)

(
k
j

)2

and we conclude using Lemma 3.5.

Proposition A.3 and [3, Theorem 1.16] provide the explicit constant appearing in the asymptotic
expansion of Theorem 2.6.

B Auxiliary results for eigenvalues variations

This section is dedicated to the proof of Propositions 4.7 and 4.8. In order to make a connection
to the results of [3], which we use, let us present an alternative characterization of the eigenvalues
(µj)j≥1 and (µj(ε))j≥1. We define

Q̂s
ε :=

{
u ∈ H1

0 (Ω̂ \ Γε) : u ◦ σ = u
}
,

and we denote by q̂sε the restriction of q̂0 (see the paragraph preceding Theorem 2.5 for the notation)

to Q̂ε. One can then check that we obtain the eigenvalues (µj(ε))j≥1 from q̂sε by the min-max
principle. In the same way, we define

Q̂s :=
{
u ∈ H1

0 (Ω̂) : u ◦ σ = u
}
,

we denote by q̂s the restriction of the quadratic form q̂0, and one can check that we obtain the
eigenvalues (µj)j≥1 from q̂s by the min-max principle. Let us note that −∆s, defined in Remark
4.4 as a self-adjoint operator in ker (I − Σ), is the Friedrichs extension of q̂s. We denote by −∆s

ε

the Friedrichs extension of q̂sε, which is also a self-adjoint operator in ker (I − Σ).
Let us first prove Proposition 4.7. Since µN (ε) ≥ µN for all ε ∈ (0, ε0] and since ε 7→ µN (ε)

is non-decreasing, we have existence of µ∗
N := limε→0+ µN (ε), with µ∗

N ≥ µN . It only remains to
show that µ∗

N ≤ µN . In order to do this, let us note that the space

Ds :=
{
u ∈ C∞

c (Ω̂ \ {0}) : u = u ◦ σ
}

is dense in ker (I − Σ). Indeed, the space C∞
c (Ω̂ \ {0}) is dense in L2(Ω̂), since {0} has measure

0. Therefore, if we fix u ∈ ker (I − Σ), there exists a sequence (ϕn)n≥1 of elements of C∞
c (Ω̂ \ {0})

converging to u in L2(Ω̂). We now set ϕ̃n := 1/2(ϕn+ϕn ◦ σ). We have ϕ̃n ∈ Ds for every integer
n ≥ 1. Since u = 1/2(u+ u ◦ σ), we have the inequality

‖ϕ̃n − u‖L2(Ω̂) ≤
1

2
‖ϕn − u‖L2(Ω̂) +

1

2
‖ϕn ◦ σ − u ◦ σ‖L2(Ω̂) = ‖ϕn − u‖L2(Ω̂),

and this implies that the sequence (ϕ̃n)n≥1 converges to u in ker (I − Σ).
According to the min-max characterization of eigenvalues and the previous density result,

µN = inf
E⊂Ds subspace

dim(E)=N

max
u∈E

q̂0(u)

‖u‖2 .
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Let us now fix δ > 0 and an N -dimensional subspace Eδ ⊂ Ds such that

max
u∈Eδ

q̂0(u)

‖u‖2 ≤ µN + δ.

There exists ε1 > 0 such that Eδ ⊂ Q̂s
ε for every ε ∈ (0, ε1]. This implies that, for every ε ∈ (0, ε1],

µN (ε) = min
E⊂Q̂s

ε subspace

dim(E)=N

max
u∈E

q̂sε(u)

‖u‖2 ≤ max
u∈Eδ

q̂0(u)

‖u‖2 ≤ µN + δ.

Passing to the limit, we obtain first µ∗
N ≤ µN + δ, and then µ∗

N ≤ µN , concluding the proof.

Let us finally prove Proposition 4.8. We recall that, as a corollary of Theorem 1.10 in [3], taking
into account Proposition A.3 we have the following result.

Proposition B.1. Let λ̂N be a simple eigenvalue of −∆̂ and uN an associated eigenfunction
normalized in L2(Ω̂). Let us assume that uN ∈ Q̂s. For ε > 0 small, we denote as λ̂N (ε) the N -th

eigenvalue of the Dirichlet Laplacian in Ω̂ \ Γε. If uN (0) 6= 0, then

λ̂N (ε) = λ̂N +
2π

| log(ε)|uN (0)2 + o

(
1

| log(ε)|

)
as ε→ 0+.

If
r−kuN (r cos t, r sin t) → β̂ cos (kt) in C1,τ ([0, π],R)

as r → 0+ for all τ ∈ (0, 1), with k ∈ N
∗ and β̂ ∈ R \ {0}, then

λ̂N (ε) = λ̂N +
kπβ̂2

4k−1

(
k − 1⌊
k−1
2

⌋
)2

ε2k + o
(
ε2k
)

as ε→ 0+.

Let us note that if the hypotheses of Proposition B.1 are satisfied, λ̂N is a simple eigenvalue of
−∆s and uN an associated eigenfunction. But the converse is not true. Indeed, we have seen in
Section 4.5, in the case of λ̂3 for the unit disk that λ̂N can be simple for −∆s without being simple
for −∆̂. Proposition B.1 is therefore weaker than Proposition 4.8. However, the proof of Theorem
1.10 in [3] can be adapted to prove Proposition 4.8. Let us sketch the changes to be made. The
proof in [3] mainly relies on Theorem 1.4 of [3], and uses the u-capacity and the associated potential
defined in [3, Equations (6), (7), and (8)]. The following Lemma gives an alternative expression
when both u and the compact set K are symmetric; it follows easily from Steiner symmetrization
arguments.

Lemma B.2. If u ∈ Q̂s and K ⊂ Ω̂ is a compact set such that σ(K) = K, then

CapΩ̂(K,u) = min
{
q̂s(V ) : V ∈ Q̂s and u− V ∈ H1

0 (Ω̂ \K)
}

and the potential VK,u attaining the above minimum belongs to Q̂s.

Our proof of Proposition 4.8 relies on the following analog to [3, Theorem 1.4].

Proposition B.3. Let µL be a simple eigenvalue of −∆s and uL an associated eigenfunction,
normalized in L2(Ω̂). Then

µL(ε) = µL + CapΩ̂(Γε, uL) + o
(
CapΩ̂(Γε, uL)

)
as ε→ 0+.

In order to prove Proposition B.3, we note that Lemma B.2 implies in particular that uL−VΓε,uL

is the orthogonal projection of uL on H1
0 (Ω̂\Γε)∩Q̂s and CapΩ̂(Γε, uL) the square of the distance

of uL from H1
0 (Ω̂ \Γε)∩ Q̂s, both defined with respect to the scalar product induced by q̂s on Q̂s.

We also note that we can use the estimates of VΓε,uL given in Lemma A.1 and Corollary A.2 of
[3]. We can therefore repeat step by step the proof of Theorem 1.4 in Appendix A of [3], replacing

L2(Ω̂) by ker (I − Σ), H1
0 (Ω̂) with Q̂s, H1

0 (Ω̂ \ Γε) by H1
0 (Ω̂ \Γε) ∩ Q̂s, q̂ and q̂ε by q̂

s and q̂sε , −∆̂

and −∆̂ε by −∆s and −∆s
ε, λ̂N by µL and uN ∈ H1

0 (Ω̂) by uL ∈ Q̂s. We obtain Proposition B.3.
The estimates of CapΩ̂(Γε, u) proved in [3, Section 2] then give us Proposition 4.8.
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C Alternative proof of Theorem 3.1

We find useful to show an alternative proof of Theorem 3.1. This proof is based on sharp estimates
from above and below of the Rayleigh quotients for the eigenvalues λN and λN (ε). Such estimates
require energy bounds on eigenfunctions obtained by an Almgren type monotonicity argument and
blow-up analysis for scaled eigenfunctions. We mention that such a strategy was first developed in
[1, 2, 5, 17] for eigenvalues of Aharonov–Bohm operators with a moving pole. On the other hand,
the implementation of this procedure for our problem requires a quite different technique with
respect to the case of Aharonov–Bohm operators with a single pole, when estimating a singular
term appearing in the derivate of the Almgren frequency function (i.e. the term (58)). Indeed, in
the single pole case estimates can be derived by rewriting the problem as a Laplace equation on
the twofold covering, whereas in this case the singular term (58) turns out to have a negative sign
and this is enough to proceed with the monotonicity argument (see Subsection C.2).

In this argument, an important step is a blow-up result for scaled eigenfunctions.
In what follows, we aim at pointing out the main steps of the proof, together with a more

deepened analysis at the crucial points. We list below some notation used throughout this appendix.

- For r > 0 and a ∈ R2, Dr(a) = {x ∈ R2 : |x− a| < r} denotes the disk of center a and radius
r. We also denote the corresponding upper half-disk as D+

r (a) = {(x1, x2) ∈ Dr(a) : x2 > 0}.

- For all r > 0, Dr = Dr(0) is the disk of center 0 and radius r; D+
r = {(x1, x2) ∈ Dr : x2 > 0}

denotes the corresponding upper half-disk.

- For r > 0 and a ∈ R2, S+
r (a) = {(x1, x2) ∈ ∂Dr(a) : x2 > 0} denotes the upper half-circle of

center a and radius r. We also denote S+
r := S+

r (0).

C.1 Limit profile

This section contains a variational construction of the limit profile which will be used to describe
the limit of the blow-up sequence.

Let us consider the functional Jk : Q → R (see Subsection 3.1 for the definition of Q)

Jk(u) =
1

2

∫

R
2
+

|∇u(x)|2 dx−
∫ 1

−1

u(x1, 0)
∂ψk
∂x2

(x1, 0) dx1, (43)

with ψk defined in (11). We observe that ∂ψk

∂x2
(x1, 0) = kx1

k−1 and Jk is well-defined on Q.

Lemma C.1. For all k ∈ N, k ≥ 1, let wk ∈ Q be the unique weak solution to (24) and let

mk = − 1
2

∫
R

2
+

|∇wk|2 dx be as in (42). Then

mk = min
u∈Q

Jk(u) = Jk(wk) < 0. (44)

Furthermore, wk(x) = O
(

1
|x|
)
as |x| → +∞.

Proof. The proof follows from standard minimization methods, Hardy Inequality and Kelvin Trans-
form.

Lemma C.2. For every k ∈ N, k ≥ 1, there exists a unique Φk ∈ ⋂R>0H
1(D+

R) such that





Φk − ψk ∈ Q,
−∆Φk = 0, in R2

+ in a distributional sense,

Φk = 0 on s,
∂Φk

∂ν = 0 on Γ1,

(45)
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where ν = (0,−1) is the outer normal unit vector on ∂R2
+. Furthermore, the unique solution to

(45) is given by
Φk = ψk + wk,

where wk is as in Lemma C.1 and ψk is defined in (11).

Proof. The existence part is proved by taking Φk = ψk + wk. To prove uniqueness, one can argue
by contradiction exploiting the Hardy Inequality (see[1, Proposition 4.3] for a detailed proof in a
similar problem).

For future convenience, we state and prove here the following lemma, which relates the limit
profile Φk (more precisely, its k-th Fourier coefficient) to the minimum mk.

Lemma C.3. Let Φk be as in Lemma C.2. Then
∫ π

0

Φk(cos t, sin t) sin(kt) dt = −mk

k
+
π

2
.

Proof. Let us define the function

ω(r) :=

∫ π

0

wk(r cos t, r sin t) sin(kt) dt, r > 0,

where wk is as in Lemma C.1. Then, recalling that Φk = wk + ψk, we have that

ω(1) =

∫ π

0

Φk(cos t, sin t) sin(kt) dt−
π

2
. (46)

Since ω is the k-th Fourier coefficient of the harmonic function wk, it satisfies the differential

equation ω′′+ 1
rω

′− k2

r2 ω = 0 in (1,+∞), i.e. (r1+2k(r−kω)′)′ = 0. Hence there exists Cω ∈ R such

that
(
r−kω(r)

)′
= Cωr

−(1+2k), for r > 1. Integrating the previous equation over (1, r) we obtain
that

ω(r)

rk
− ω(1) =

Cω
2k

(
1− 1

r2k

)
, for all r ≥ 1.

Lemma C.1 provides that ω(r) = O(r−1) as r → +∞, hence, letting r → +∞ in the previous
identity, we obtain that necessarily Cω = −2kω(1) and then

ω(r) = ω(1)r−k, ω′(r) = −kω(1)r−k−1, for all r ≥ 1. (47)

On the other hand, by definition

ω′(r) = r−k−1

∫

S+
r

∂wk
∂ν

ψk ds, (48)

with ν being the outer unit vector to ∂D+
r . Combining (47) and (48) we obtain that

ω(1) = − 1

k

∫

S+

1

∂wk
∂ν

ψk ds.

Multiplying the equation −∆wk = 0 by ψk, integrating by parts on D+
1 , and recalling that ψk ≡ 0

on Γ1, we obtain that
∫

D+

1

∇wk · ∇ψk dx =

∫

∂D+

1

∂wk
∂ν

ψk ds =

∫

S+

1

∂wk
∂ν

ψk ds,

whereas multiplying −∆ψk = 0 by wk and integrating by parts on D+
1 we obtain that

∫

D+
1

∇wk · ∇ψk dx =

∫

∂D+
1

∂ψk
∂ν

wk ds.
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Taking into account the boundary data, we obtain that
∫

S+

1

∂wk
∂ν

ψk =

∫

S+

1

∂ψk
∂ν

wk −
∫

Γ1

∂ψk
∂x2

wk,

so that

ω(1) = − 1

k

∫

S+

1

∂ψk
∂ν

wk +
1

k

∫

Γ1

∂ψk
∂x2

wk. (49)

Since ∂ψk

∂ν = kψk on S+
1 , it results that kω(1) =

∫
S+

1

∂ψk

∂ν wk, so that (49) can be rewritten as

ω(1) = −ω(1) + 1
k

∫
Γ1

∂ψk

∂x2
wk and thus

ω(1) =
1

2k

∫

Γ1

∂ψk
∂x2

wk.

From (44) we deduce that ω(1) = − 1
kmk, and recalling (46) the proof is concluded.

C.2 Monotonicity argument

In order to prove convergence of blow-up eigenfunctions, energy estimates in small neighborhoods
of the Dirichlet-Neumann junctions are needed; such estimates are obtained via an Almgren type
monotonicity argument which is sketched here.

For λ ∈ R, u ∈ H1(Ω) and r ∈ (0, ε0) such that D+
r ⊂ Ω, the Almgren frequency function is

defined as

N (u, r, λ) =
E(u, r, λ)

H(u, r)
,

where

E(u, r, λ) =

∫

D+
r

(
|∇u(x)|2 − λu2(x)

)
dx, H(u, r) =

1

r

∫

S+
r

u2 ds.

In the following, we assume that assumption (8) is satisfied, i.e. the N -th eigenvalue λN of q0
is simple, and we fix an associated normalized eigenfunction uN , so that uN satisfies (9). For all
1 ≤ n < N , let un ∈ H1

0 (Ω) be an eigenfunction of q0 associated to the eigenvalue λn such that
∫

Ω

|un(x)|2 dx = 1 for all 1 ≤ n < N

and ∫

Ω

un(x)um(x) dx = 0 if 1 ≤ n,m ≤ N and n 6= m.

For every ε ∈ (0, ε0], let u
ε
N be an eigenfunction of qε associated with λN (ε), i.e. solving





−∆uεN = λN (ε)uεN , in Ω,

uεN = 0, on ∂Ω \ Γε,
∂uεN
∂ν

= 0, on Γε,

(50)

such that ∫

Ω

|uεN(x)|2 dx = 1 and

∫

Ω

uεN(x)uN (x) dx ≥ 0. (51)

For all 1 ≤ n < N and ε ∈ (0, ε0], let u
ε
n ∈ Qε be an eigenfunction of problem (4) associated to

the eigenvalue λ = λn(ε), i.e. solving




−∆uεn = λn(ε)u
ε
n, in Ω,

uεn = 0, on ∂Ω \ Γε,
∂uεn
∂ν

= 0, on Γε,

(52)
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such that ∫

Ω

|uεn(x)|2 dx = 1 for all 1 ≤ n < N (53)

and ∫

Ω

uεn(x)u
ε
m(x) dx = 0 if 1 ≤ n,m ≤ N and n 6= m. (54)

We observe that, in view of Remark 1.1,

λn(ε) ≤ λN for all ε ∈ (0, ε0] and 1 ≤ n ≤ N. (55)

Arguing as in [1, Lemma 5.2], it is possible to prove the following properties:

(i) there exists R0 ∈
(
0,min

{
ε0,

1
2
√
λN

})
such that D+

R0
⊂ Ω and

H(uεn, r) > 0 for all ε ∈ (0, R0), r ∈ (ε,R0) and 1 ≤ n ≤ N ;

(ii) for every r ∈ (0, R0], there exist Cr > 0 and αr ∈ (0, r) such that H(uεn, r) ≥ Cr for all
ε ∈ (0, αr) and 1 ≤ n ≤ N .

By direct calculations it follows that, for all ε ∈ (0, R0), ε < r < R0, and n ∈ {1, 2, . . . , N},

d

dr
H(uεn, r) =

2

r

∫

S+
r

uεn
∂uεn
∂ν

ds =
2

r
E(uεn, r, λn(ε)), (56)

d

dr
E(uεn, r, λn(ε)) == 2

∫

S+
r

∣∣∣∣
∂uεn
∂ν

∣∣∣∣
2

ds− 2

r

(
M(ε, uεn, λn(ε)) + λn(ε)

∫

D+
r

(uεn(x))
2 dx

)
(57)

where ν denotes the exterior normal unit vector to D+
r and

M(ε, u, λ) = lim
δ→0+

∫

R
2
+
∩∂Aε

δ

(
1

2
|∇u|2x · n− ∂u

∂n
(x · ∇u)− λ

2
u2x · n

)
ds, (58)

being Aεδ := D+
δ (−ε, 0) ∪ D+

δ (ε, 0) and n denoting the exterior normal unit vector to D+
r \ Aεδ.

For details in a similar problem see [17, Lemma 5.5 and 5.6]. A crucial step in the monotonicity
argument is the possibility of recognizing the sign of the quantity M(ε, u, λ).

To this aim, we first state the following result describing the behaviour of solutions to (4) at
Dirichlet-Neumann boundary junctions.

Proposition C.4. Let ε ∈ (0, ε0), λ ∈ R, and u ∈ Qε \{0} be a nontrivial solution to problem (4).
Then there exist two odd natural numbers jL = jL(ε, u, λ), jR = jR(ε, u, λ) ∈ N and two nonzero
real numbers βL = βL(ε, u, λ), βR = βR(ε, u, λ) ∈ R \ {0} such that

δ−jL/2u((−ε, 0) + δθ(t)) → βL cos
(
jL
2 t
)

in C1,σ([0, π]), (59)

δ−jR/2u((ε, 0) + δθ(t)) → βR sin
(
jR
2 t
)

in C1,σ([0, π]), (60)

as δ → 0+ for any σ ∈ (0, 1), where θ(t) = (cos t, sin t). Moreover,

δ−jL/2+1∇u((−ε, 0) + δθ(t)) → jLβL

2

(
cos
(
jL
2 t
)
θ(t)− sin

(
jL
2 t
)
τ (t)

)
(61)

δ−jR/2+1∇u((ε, 0) + δθ(t)) → jRβR

2

(
sin
(
jR
2 t
)
θ(t) + cos

(
jR
2 t
)
τ (t)

)
(62)

in C0,σ([0, π]) as δ → 0+ for any σ ∈ (0, 1), where τ (t) = (− sin t, cos t).

Proof. Through a gauge transformation, in a neighbourhood of each junction (±ε, 0) the problem
can be rewritten as an elliptic equation with an Aharonov–Bohm vector potential with pole located
at the junction; then the asymptotics follows from [11, Theorem 1.3].
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Lemma C.5. Let ε ∈ (0, ε0] and u ∈ Qε be a solution to (4) for some λ ∈ R. Moreover, let
jL = jL(ε, u, λ), jR = jR(ε, u, λ) ∈ N odd and βL = βL(ε, u, λ), βR = βR(ε, u, λ) ∈ R \ {0} be as in
Proposition C.4 and let M(ε, u, λ) be as in (58). Then

M(ε, u, λ) =





0, if jL > 1 and jR > 1,

−επ8β2
L, if jL = 1 and jR > 1,

−επ8β2
R, if jL > 1 and jR = 1,

−επ8
(
β2
L + β2

R

)
, if jL = 1 and jR = 1.

In particular, M(ε, u, λ) ≤ 0.

Proof. Since ∂Aεδ ∩R2
+ = S+

δ (−ε, 0) ∪ S+
δ (ε, 0), we split (58) into the corresponding two contribu-

tions.

Negligible terms. On S+
δ (−ε, 0), we have that x = (−ε, 0) + δθ(t) for some t ∈ [0, π] and

n = −θ, where θ(t) = (cos t, sin t); hence x · n = ε cos t − δ. From (59) and (61) we have that

u((−ε, 0) + δθ(t)) → 0 and |∇u((−ε, 0) + δθ(t))|2 =
j2Lβ

2
L

4 δjL−2(1 + o(1)) uniformly on [0, π] as
δ → 0. From the Dominated Convergence Theorem we then obtain

∫

S+

δ (−ε,0)
(|∇u|2 − λu2)x · n ds

= δ

∫ π

0

(|∇u((−ε, 0) + δθ(t))|2 − λ|u((−ε, 0) + δθ(t))|2) (ε cos t− δ) dt

→
{
0, if jL > 1,
β2
Lε
4

∫ π
0
cos t dt = 0, if jL = 1,

as δ → 0.

Leading term. We now look at the last term

−
∫

S+

δ
(−ε,0)

∂u

∂n
(x · ∇u) ds =

∫

S+

δ
(−ε,0)

(θ · ∇u)(x · ∇u) ds,

since θ = −n on S+
δ (−ε, 0). From (61) we have

δ−jL/2+1∇u((−ε, 0) + δθ(t)) · θ(t) → jL
2
βL cos

(
jL
2
t

)

in C0([0, π]) as δ → 0. On the other hand, for x = (−ε, 0) + δθ(t) we have that

δ−
jL
2
+1∇u((−ε, 0) + δθ(t)) · x→ −εjL

2
βL

(
cos
(jL
2
t
)
cos t+ sin

(jL
2
t
)
sin t

)

in C0([0, π]) as δ → 0. Thus, by the Dominated Convergence Theorem, we have

−
∫

S+

δ (−ε,0)

∂u

∂n
(x · ∇u) ds

= δ

∫ π

0

(∇u((−ε, 0) + δθ(t))·((−ε, 0) + δθ(t))) (∇u((−ε, 0) + δθ(t))·θ(t)) dt

→
{
0, if jL > 1,

− ε
4 (βL)

2
∫ π
0

(
cos2

(
t
2

)
cos t+ cos

(
t
2

)
sin
(
t
2

)
sin t

)
dt, if jL = 1,

=

{
0, if jL > 1,

− ε
4β

2
L

∫ π
0 cos2

(
t
2

)
dt, if jL = 1,

=

{
0, if jL > 1,

− ε
8β

2
Lπ, if jL = 1,
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as δ → 0. One can follow the same argument to compute the contribution coming from S+
δ (ε, 0).

Putting together the two contributions we obtain the thesis.

This turns out to be sufficient to prove the following:

Lemma C.6. For any n ∈ {1, . . . , N}, ε ∈ (0, R0), and r, R such that ε < r < R ≤ R0 we have
that

N (uεn, r, λn(ε)) + 1 ≤ (N (uεn, R, λn(ε)) + 1) e2λNR
2

.

In particular, for every δ ∈ (0, 1) there exists rδ ∈ (0, R0) such that, for any ε ∈ (0, rδ) and
r ∈ (ε, rδ), N (uεN , r, λN (ε)) ≤ k + δ, k being as in (10).

Proof. Once the negative sign of M(ε, u, λ) is established (Lemma C.5) the proof proceeds as in
[1, Section 5].

Lemma C.6 is the key point for a priori estimates on energy of the blow up sequence in half-
disks. These estimates are in turn fundamental to deduce estimates on the difference of eigenvalues,
as it appears in the following subsection.

C.3 Estimates on the difference of eigenvalues

Firstly, we are going to estimate the Rayleigh quotient for λN (ε). Let R > 1. With R0 as in the
previous section, for every ε ∈ (0, ε0) such that Rε < R0 we define the function

vR,ε =

{
vintR,ε, in D+

Rε,

uN , in Ω \D+
Rε,

where vintR,ε is the unique solution to




−∆vintR,ε = 0, in D+
Rε,

vintR,ε = uN , on S+
Rε,

vintR,ε = 0, on ΓRε \ Γε,
∂vint

R,ε

∂ν = 0, on Γε,

(63)

i.e., by the Dirichlet principle, the unique solution to the minimization problem
∫

D+

Rε

|∇vintR,ε|2dx = min
{∫

D+

Rε
|∇v|2 : v ∈ H1(D+

Rε), v = uN on S+
Rε, v = 0 on ΓRε \ Γε

}
. (64)

In order to handle the denominator of the Rayleigh quotient we proceed with a Gram-Schmidt
process. Since we are taking into account u1, . . . , uN−1 as the first N − 1 test functions for the
Rayleigh quotient, which are already orthonormalized in L2(Ω), we define

ũR,ε =
vR,ε −

∑N−1
j=1

(∫
Ω
vR,ε uj

)
uj∥∥∥vR,ε −

∑N−1
j=1

(∫
Ω
vR,ε uj

)
uj

∥∥∥
L2(Ω)

.

Using the Dirichlet Principle and the asymptotics (10) one can easily prove the following energy
estimates for vintR,ε in small disks.

Lemma C.7. There exists a constant C > 0 (independent of ε and R) such that, for every R > 1
and ε ∈ (0, ε0) such that Rε < R0, the following estimates hold:

∫

D+

Rε

|∇vintR,ε|2dx ≤ C(Rε)2k, (65)

∫

S+

Rε

|vintR,ε|2ds ≤ C(Rε)2k+1, (66)

∫

D+

Rε

|vintR,ε|2dx ≤ C(Rε)2k+2. (67)

28



To our aim, for every R > 1 we define vR as the unique solution to the minimization problem

∫

D+

R

|∇vR|2dx = min

{∫

D+

R

|∇v|2dx : v ∈ H1(D+
R), v = ψk on S+

R , v = 0 on ΓR \ Γ1

}
.

The function vR is the unique weak solution to





−∆vR = 0, in D+
R ,

vR = ψk, on S+
R ,

vR = 0, on ΓR \ Γ1,
∂vR
∂ν = 0, on Γ1.

(68)

As well, we introduce the following blow-up functions

Uε(x) :=
uN (εx)

εk
, V Rε (x) :=

vintR,ε(εx)

εk
. (69)

Combining (10) with the Dirichlet Principle, we can establish the following convergences

Uε → βψk as ε→ 0 in H1(D+
R) for every R > 1; (70)

V Rε → βvR for ε→ 0 and for any R > 1; (71)

vR → Φk in H1(D+
r ) as R → +∞ for any r > 1. (72)

Proposition C.8. For any R > 1 and ε ∈ (0, ε0) such that Rε < R0, we have that

λN (ε)− λN
ε2k

≤ fR(ε)

where

lim
ε→0

fR(ε) = β2

∫

S+

R

ψk

(
∂vR
∂ν

− ∂ψk
∂ν

)
ds

with ψk defined in (11) and vR in (68).

Proof. We note that

∥∥∥∥vR,ε −
N−1∑

j=1

(∫

Ω

vR,ε uj dx

)
uj

∥∥∥∥
2

L2(Ω)

= ‖vR,ε‖2L2(Ω) −
N−1∑

j=1

(∫

Ω

vR,ε uj dx

)2

= 1−
∫

D+

Rε

u2N dx+

∫

D+

Rε

|vintR,ε|2 dx−
N−1∑

j=1

(∫

Ω

vR,ε uj dx

)2

= 1 +O(ε2k+2) as ε→ 0 (73)

in view of (10) and (67) and since, for all j < N ,

∫

Ω

vR,ε uj dx = −
∫

D+

Rε

uN uj dx+

∫

D+

Rε

vintR,ε uj dx = O(εk+2) as ε→ 0. (74)

The functions u1, . . . , uN−1, ũR,ε are linearly independent (since they are nontrivial and mutually
orthogonal) and belong to Qε; if we plug a linear combination of them into the Rayleigh quotient
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(7) we obtain

λN (ε)− λN ≤


 max

(α1,...,αN )∈R
N

∑N
j=1

|αj |2=1

∫

Ω

∣∣∣∣∇
(N−1∑

j=1

αjuj + αN ũR,ε

)∣∣∣∣
2


− λN

= max
(α1,...,αN )∈R

N

∑N
j=1

|αj |2=1



N−1∑

j=1

α2
jλj + α2

N

∫

Ω

|∇ũR,ε|2 + 2

N−1∑

j=1

αjαN

∫

Ω

∇uj ·∇ũR,ε−λN




= max
(α1,...,αN )∈R

N

∑N
j=1

|αj |2=1

[
N−1∑

j=1

α2
j(λj − λN ) + α2

N

(∫

Ω

|∇ũR,ε|2 − λN

)
+ 2

N−1∑

j=1

αjαN

∫

Ω

∇uj · ∇ũR,ε
]
.

In view of (65) and (10) we have that

∫

Ω

∇vR,ε · ∇uj = −
∫

D+

Rε

∇uN · ∇uj dx+

∫

D+

Rε

∇vintR,ε · ∇uj dx = O(εk+1). (75)

Moreover, from convergences (70)–(72) we have

∫

Ω

|∇vR,ε|2dx− λN = −
∫

D+

Rε

|∇uN |2dx+

∫

D+

Rε

|∇vintR,ε|2dx

= ε2k
(
−
∫

D+

R

|∇Uε|2dx+

∫

D+

R

|∇V Rε |2dx
)

= ε2kβ2

(
−
∫

D+

R

|∇ψk|2dx+

∫

D+

R

|∇vR|2dx + o(1)

)

= ε2kβ2

(∫

S+

R

ψk

(
∂vR
∂ν

− ∂ψk
∂ν

)
ds+ o(1)

)
as ε→ 0. (76)

Collecting (73), (74), (75), and (76), we obtain that

∫

Ω

|∇ũR,ε|2 − λN

=

∫
Ω |∇vR,ε|2 +

N−1∑
j=1

(∫
Ω vR,ε uj

)2
λj − 2

N−1∑
j=1

(∫
Ω vR,ε uj

) ∫
Ω ∇vR,ε · ∇uj

∥∥∥vR,ε −
∑N−1

j=1

(∫
Ω
vR,ε uj

)
uj

∥∥∥
2

L2(Ω)

− λN

= ε2kβ2

(∫

S+

R

ψk

(
∂vR
∂ν

− ∂ψk
∂ν

)
ds+ o(1)

)
as ε→ 0.

From (73), (74), and (75) it follows that, for every j < N ,

∫

Ω

∇uj · ∇ũR,ε = O(εk+1) as ε→ 0.

Hence, the assumptions in [1, Lemma 6.1] are fulfilled by µ(ε) =
∫
S+

R
ψk
(
∂vR
∂ν − ∂ψk

∂ν

)
ds + o(1),

α = 1, σ(ε) = β2ε2k and M = 2k − 1 and the conclusion follows.

In the sequel we denote

κR :=

∫

S+

R

ψk

(
∂vR
∂ν

− ∂ψk
∂ν

)
ds. (77)

Lemma C.9. Let κR be defined in (77). Then limR→+∞ κR = 2mk, with mk as in (44).
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Proof. From (68) it follows that the function σR defined as

σR(r) :=

∫ π

0

vR(r(cos t, sin t)) sin(kt) dt, r ∈ [1, R], (78)

satisfies the equation (r1+2k(r−kσR)′)′ = 0 and hence, for some cR ∈ R,
(
r−kσR(r)

)′
= cR

r1+2k in
(1, R). Integrating the previous equation over (1, r) we obtain

r−kσR(r)− σR(1) =
cR
2k

(
1− 1

r2k

)
, for all r ∈ (1, R]. (79)

Since (68) implies that σR(R) =
1
2πR

k, from (79) we deduce that

cR
2k

=
R2k

R2k − 1

(
π

2
− σR(1)

)

and then

σR(r) = rk
π
2R

2k − σR(1)

R2k − 1
− r−k

R2k

R2k − 1
(π2 − σR(1)),

for all r ∈ (1, R]. If we differentiate the previous identity and evaluate it in r = R, we obtain

σ′
R(R) = k

Rk−1

R2k − 1

(
π
2 (R

2k + 1)− 2σR(1)
)
. (80)

On the other hand, differentiating (78), we obtain that

σ′
R(r) = r−1−k

∫

S+
r

∇vR · ν ψk ds (81)

and then from (80) and (81)

σ′
R(R) = R−1−k

∫

S+

R

ψk
∂vR
∂ν

ds = k
Rk−1

R2k − 1

(
π
2 (R

2k + 1)− 2σR(1)
)
. (82)

As well, from the definition of ψk (11) we have that

∫

S+

R

ψk
∂ψk
∂ν

ds =
π

2
k R2k. (83)

Combining (82) and (83) we obtain that

κR =
2kR2k

R2k − 1

(
π

2
− σR(1)

)
=

2kR2k

R2k − 1

(
π

2
−
∫ π

0

vR(cos t, sin t) sin(kt) dt

)

and hence, via (72),

lim
R→+∞

κR = 2k

(
π

2
−
∫ π

0

Φk(cos t, sin t) sin(kt) dt

)
.

By Lemma C.3, the proof is concluded.

We are now going to estimate the Rayleigh quotient for λN . Let R ≥ 1. Choosing R0 as in the
previous subsection, for every ε ∈ (0, ε0) such that Rε < R0 and for any j = 1, . . . , N we define
the function

wj,R,ε =

{
wintj,R,ε, in D+

Rε,

wextj,R,ε, in Ω \D+
Rε,

(84)
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where, letting uεj be as in (50)–(54),

wextj,R,ε = uεj in Ω \D+
Rε,

and wintj,R,ε is the unique solution to





−∆wintj,R,ε = 0, in D+
Rε,

wintj,R,ε = uεj , on S+
Rε,

wintj,R,ε = 0, on ΓRε.

(85)

By the Dirichlet principle, we have that wintj,R,ε is the unique solution to the minimization problem

∫

D+

Rε

|∇wintj,R,ε|2dx = min
{∫

D+

Rε
|∇v|2dx : v ∈ H1(D+

Rε), v = uεj on S
+
Rε, v = 0 on ΓRε

}
. (86)

In order to handle the denominator we proceed with a Gram-Schmidt process. We then define

ûj,R,ε :=
w̃j,R,ε

‖w̃j,R,ε‖L2(Ω)
, j = 1, . . . , N, (87)

where w̃N,R,ε := wN,R,ε and

w̃j,R,ε := wj,R,ε −
N∑

ℓ=j+1

∫
Ω
wj,R,εw̃ℓ,R,ε dx

‖w̃ℓ,R,ε‖2L2(Ω)

w̃ℓ,R,ε for j = 1, . . . , N − 1.

We can derive the following estimate of the energy of eigenfunctions uεj in half-disks of radius of
order ε.

Lemma C.10. For 1 ≤ j ≤ N and ε ∈ (0, ε0), let u
ε
j be as in (50)–(54). For every δ ∈ (0, 1/2),

there exists µδ > 1 such that, for all R ≥ µδ, ε <
R0

R , and 1 ≤ j ≤ N ,

∫

S+

Rε

|uεj |2 ds ≤ C(Rε)3−2δ, (88)

∫

D+

Rε

|∇uεj |2 dx ≤ C(Rε)2−2δ, (89)

∫

D+

Rε

|uεj |2 dx ≤ C(Rε)4−2δ, (90)

∫

S+

Rε

|wintj,R,ε|2 ds ≤ C(Rε)3−2δ, (91)

∫

D+

Rε

|∇wintj,R,ε|2 dx ≤ C(Rε)2−2δ, (92)

∫

D+

Rε

|wintj,R,ε|2 dx ≤ C(Rε)4−2δ, (93)

for some constant C > 0 depending only on R0 and λN .

Proof. From (52) and (55) we know that {uεj}ε∈(0,ε0) is bounded in H1; hence, from of property
(ii) at page 26 we deduce that, for ε sufficiently small, N(uεj , R0, λj(ε)) is bounded uniformly with
respect to ε. Estimates (88)–(90) then follow from Lemma C.6; we refer to [1, Lemma 5.8] for
a detailed proof in a similar problem. Estimates (91)–(93) can be proved combining estimates
(88)–(90) with the Dirichlet principle (see [1, Lemma 6.2] for details in a similar problem).
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For δ ∈ (0, 1/2) fixed, let µδ be as in Lemma C.10. For ε sufficiently small in such a way that
µδε < R0, we introduce the following blow-up functions:

Ûε(x) :=
uεN(εx)√
H(uεN , µδε)

, WR
ε (x) :=

wintN,R,ε(εx)√
H(uεN , µδε)

. (94)

We notice that, by scaling,
1

µδ

∫

S+
µδ

|Ûε|2 ds = 1. (95)

Theorem C.11. Let δ ∈ (0, 1/2) be fixed and let rδ > 0 be as in Lemma C.6. For all R ≥ µδ,

the family of functions
{
Ûε(x) : Rε < rδ

}
is bounded in H1(D+

R). (96)

In particular, for all R ≥ µδ,

∫

D+

Rε

|∇uεN |2 dx = O(H(uεN , µδε)), as ε→ 0+, (97)

∫

S+

Rε

|uεN |2ds = O(εH(uεN , µδε)), as ε→ 0+, (98)

∫

D+

Rε

|uεN |2dx = O(ε2H(uεN , µδε)), as ε→ 0+. (99)

Proof. We omit the proof which can be derived from the monotonicity result given in Lemma C.6
following the same argument as Lemma C.10; for details in an analogous problem we refer to [1,
Theorem 5.9].

By the Dirichlet principle and Theorem C.11 we have also the following estimates.

Lemma C.12. For all R > max{2, µδ},

the family of functions
{
WR
ε : Rε < rδ

}
is bounded in H1(D+

R). (100)

In particular, for all R > max{2, µδ},
∫

D+

Rε

∣∣∇wintN,R,ε

∣∣2 dx = O(H(uεN , µδε)), as ε→ 0+, (101)

∫

S+

Rε

|wintN,R,ε|2dx = O(εH(uεN , µδε)), as ε→ 0+, (102)

∫

D+

Rε

|wintN,R,ε|2dx = O(ε2H(uεN , µδε)), as ε→ 0+. (103)

We are now in position to prove a sharp upper bound for the eigenvalue variation λN − λN (ε).

Proposition C.13. There exists R̃ > 2 such that, for all R > R̃ and ε > 0 with Rε < R0,

λN − λN (ε)

H(uεN , µδε)
≤ gR(ε)

where

gR(ε) =

∫

D+

R

|∇WR
ε |2 dx−

∫

D+

R

|∇Ûε|2 dx+ o(1) and gR(ε) = O(1) as ε→ 0+, (104)

with Ûε and WR
ε defined in (94).
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Proof. As already mentioned, we take into account the Courant–Fisher characterization for λN
recalled in (6) and consider the N -dimensional space spanned by the functions {ûj,R,ε,}Nj=1 defined
in (87). Before proceeding, we note that

‖w̃N,R,ε‖2L2(Ω) = 1 +O
(
ε2H(uεN , µδε)

)
,

dR,εN,j :=

∫
Ω wj,R,εw̃N,R,ε dx

‖w̃N,R,ε‖2L2(Ω)

= O
(
ε3−δ

√
H(uεN , µδε)

)
, for all j < N, (105)

as ε→ 0, thanks to (99), (103), (90) and (93). On the other hand,

‖w̃j,R,ε‖2L2(Ω) = 1+ O(ε4−2δ),

dR,εℓ,j :=

∫
Ω
wj,R,εw̃ℓ,R,ε dx

‖w̃ℓ,R,ε‖2L2(Ω)

= O(ε4−2δ), for all j 6= ℓ, (106)

as ε→ 0 and for any j = 1, . . . , N − 1 thanks to (93) and (90).
If we plug a linear combination of {ûj,R,ε,}Nj=1 into the Rayleigh quotient we obtain that

λN ≤ max
(α1,...,αN )∈R

N

∑N
j=1

|αj |2=1

∫

Ω

∣∣∣∣∇
( N∑

j=1

αj ûj,R,ε

)∣∣∣∣
2

dx,

and then

λN − λN (ε) ≤ max
(α1,...,αN )∈R

N

∑N
j=1

|αj |2=1

N∑

j,n=1

mε,R
j,n αjαn, (107)

where

mε,R
j,n =

∫

Ω

∇ûj,R,ε · ∇ûn,R,ε dx− λN (ε)δjn,

with δjn = 1 if j = n and δjn = 0 if j 6= n.
From (56) and Lemma C.6, if R ≥ µδ and Rε < rδ we have

1

H(uεN , r)

d

dr
H(uεN , r) =

2

r
N (uεN , r, λN (ε)) ≤ 2

r
(k + δ) for all µδε ≤ r ≤ rδ, (108)

Integration of (108) over the interval (µδε, rδ) and property (ii) at page 26 yield

H(uεN , µδε) ≥ Cδε
2k+2δ, if µδε < rδ, (109)

for some Cδ > 0 independent of ε. Estimate (88) implies that

H(uεN , µδε) = O(ε2−2δ) as ε→ 0. (110)

From (105), (94), Theorem C.11, and Lemma C.12 we deduce that

mε,R
N,N =

λN (ε)(1 − ‖wN,R,ε‖2L2(Ω))

‖wN,R,ε‖2L2(Ω)

+

(∫
D+

Rε

∣∣∇wintN,R,ε

∣∣2dx −
∫
D+

Rε

∣∣∇uεN
∣∣2dx

)

‖wN,R,ε‖2L2(Ω)

= H(uεN , µδε)

(∫

D+

R

|∇WR
ε |2 dx−

∫

D+

R

|∇Ûε|2 dx+ o(1)

)
, (111)
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as ε → 0+. On the other hand, if j < N , by the convergence of the perturbed eigenvalue, (106),
(92), (89) we have that

mε,R
j,j = −λN (ε) +

1

‖w̃j,R,ε‖2L2(Ω)

(
λj(ε)−

∫

D+

Rε

∣∣∇uεj
∣∣2 dx+

∫

D+

Rε

∣∣∇wintj,R,ε

∣∣2 dx
)

+
1

‖w̃j,R,ε‖2L2(Ω)

∫

Ω

∣∣∣∣∇
(∑

ℓ>j

dR,εℓ,j w̃ℓ,R,ε

)∣∣∣∣
2

dx

− 2

‖w̃j,R,ε‖2L2(Ω)

(∫

Ω

∇wj,R,ε · ∇
(∑

ℓ>j

dR,εℓ,j w̃ℓ,R,ε

)
dx

)

= (λj − λN ) + o(1) as ε→ 0.

From (105), (106), (89), (92), (97), and (101), it follows that, for all j < N ,

‖w̃j,R,ε‖L2(Ω)‖w̃N,R,ε‖L2(Ω)m
ε,R
j,N =

∫

D+

Rε

(
∇wintj,R,ε · ∇wintN,R,ε −∇uεj · ∇uεN

)
dx

−
∫

Ω

∇
(∑

ℓ>j

dR,εℓ,j w̃ℓ,R,ε

)
· ∇wN,R,ε dx = O

(
ε1−δ

√
H(uεN , µδε)

)
.

Hence, by (105) and (106), we have that

mε,R
j,N = O

(
ε1−δ

√
H(uεN , µδε)

)
and mε,R

N,j = mε,R
j,N = O

(
ε1−δ

√
H(uεN , µδε)

)

as ε→ 0+. From (106), (89), (92), we deduce that, for all j, n < N with j 6= n,

‖w̃j,R,ε‖L2(Ω)‖w̃n,R,ε‖L2(Ω)m
ε,R
j,n

=

∫

D+

Rε

(
∇wintj,R,ε · ∇wintn,R,ε −∇uεj · ∇uεn

)
dx

+

∫

Ω

∇
(∑

ℓ>j

dR,εℓ,j w̃ℓ,R,ε
)
· ∇
(∑

h>n

dR,εh,nw̃h,R,ε
)
dx

−
∫

Ω

∇
(∑

ℓ>j

dR,εℓ,j w̃ℓ,R,ε
)
· ∇wn,R,ε dx

−
∫

Ω

∇wj,R,ε · ∇
(∑

h>n

dR,εh,nw̃h,R,ε
)
dx = O(ε2−2δ) as ε→ 0.

Hence, in view of (106),

mε,R
j,n = O(ε2−2δ) as ε→ 0.

Taking into account (109), we can then apply [1, Lemma 6.1] with σ(ε) = H(uεN , µδε), µ(ε) = gR(ε),
α = 1− δ and M = 4k in order to deduce

max
(α1,...,αN )∈R

N

∑N
j=1

|αj |2=1

N∑

j,n=1

mε,R
j,n αjαn = H(uεN , µδε)

(∫

D+

R

|∇WR
ε |2 dx −

∫

D+

R

|∇Ûε|2 dx+ o(1)

)

as ε→ 0+, which, in view of (107), yields λN−λN (ε)
H(uε

N ,µδε)
≤ gR(ε) with gR as in (104). We notice that,

from Theorem C.11 and Lemma C.12, for all R > max{2, µδ}, gR(ε) = O(1) as ε→ 0+. The proof
is now complete.

Combining Proposition C.8, Lemma C.9 and Proposition C.13 we obtain the following up-
per/lower estimates for λN − λN (ε).
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Proposition C.14. There exists a positive constant C∗ > 0 such that

−2β2
mk ε

2k(1 + o(1)) ≤ λN − λN (ε) ≤ C∗H(uεN , µδε), as ε→ 0,

with mk < 0 as in (44) and (42).

C.4 Sharp blow-up analysis and asymptotics

Let us consider the function

F : R×H1
0 (Ω) −→ R×H−1(Ω) (112)

(λ, ϕ) 7−→
(
q(ϕ)− λN , −∆ϕ− λϕ

)
,

where q is defined in (5) and −∆ϕ− λϕ ∈ H−1(Ω) acts as

H−1(Ω)

〈
−∆ϕ− λϕ, u

〉
H1

0
(Ω)

=

∫

Ω

∇ϕ · ∇u dx−λ
∫

Ω

ϕu dx

for all ϕ ∈ H1
0 (Ω). We have that F (λN , uN ) = (0, 0), F is Fréchet-differentiable at (λN , uN) and

its Fréchet-differential dF (λN , uN) ∈ L
(
R ×H1

0 (Ω),R ×H−1(Ω)
)
is invertible. Therefore we can

control |λN (ε)−λN | and ‖wN,R,ε−uN‖H1
0
(Ω)‖ with ‖F (λN (ε)−wN,R,ε‖R×H−1(Ω). Then the norm

‖F (λN (ε) − wN,R,ε‖R×H−1(Ω) can be estimated taking advantage of the computations performed
in Section C.3, thus yielding

‖wN,R,ε − uN‖H1
0
(Ω) = O

(√
H(uεN , µδε)

)

as ε→ 0+ for every R > 2, µδ being as in Lemma C.10 for some δ ∈ (0, 1/2) fixed.
As a consequence, for every R > 2

∫
(

1
εΩ
)
\D+

R

∣∣∣∣∇
(
Ûε − εk√

H(uε
N ,µδε)

Uε

)∣∣∣∣
2

dx = O(1), as ε→ 0+. (113)

Using (113) and the uniqueness part of Lemma C.2, we can identify univocally the limit of the
blow-up family {Ûε}ε introduced in (94) and prove that

lim
ε→0+

εk√
H(uεN , µδε)

=
1

|β|

√
µδ∫

S+
µδ

|Φk|2ds

and

Ûε →
β

|β|

√
µδ∫

S+
µδ

|Φk|2ds
Φk as ε→ 0+ (114)

in H1(D+
R) for every R > 1 and in C2

loc(R
2
+ \ {e,−e}), see [1, Theorem 8.1] for details.

Combining (114) with the Dirichlet principle, we can prove convergence of the blow-up family
WR
ε introduced in (94): for all R > 2,

WR
ε → β

|β|

√
µδ∫

S+
µδ

|Φk|2ds
wR as ε→ 0+ in H1(D+

R), (115)

where wR is the unique solution to the minimization problem

∫

D+

R

|∇wR(x)|2 dx = min

{∫

D+

R

|∇u|2 dx : u ∈ H1(D+
R), u = Φk on S+

R , u = 0 on ΓR

}
,
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which then solves 



−∆wR = 0, in D+
R ,

wR = Φk, on S+
R ,

wR = 0, on ΓR.

To obtain the exact asymptotics for λN − λN (ε) it remains to determine the limit of the function
gR(ε) defined in (104) of Proposition C.13 as ε→ 0 and R → +∞.

Lemma C.15. For all R > R̃ and ε > 0 with Rε < R0, let gR(ε) be as in Proposition C.13. Then

lim
ε→0+

gR(ε) =
µδ∫

S+
µδ

|Φk|2ds
κ̃R (116)

where

κ̃R =

∫

S+

R

(
∇wR · ν −∇Φk · ν

)
Φk ds, (117)

with ν = x
|x| . Furthermore limR→+∞ κ̃R = −2mk, where mk is defined in (42) and (44).

Proof. We first observe that, by (104) and convergences (114)–(115),

lim
ε→0+

gR(ε) =
µδ∫

S+
µδ

|Φk|2ds

(∫

D+

R

|∇wR|2 dx −
∫

D+

R

|∇Φk|2 dx
)

=
µδ∫

S+
µδ

|Φk|2ds
κ̃R

with κ̃R as in (117). We observe that

κ̃R =

∫

S+

R

(
∇wR · ν −∇Φk · ν

)
ψk ds+ I1(R) + I2(R) (118)

where

I1(R) =

∫

S+

R

(
Φk − ψk

)
∇
(
ψk − Φk

)
· ν ds, I2(R) =

∫

S+

R

(
Φk − ψk

)
∇
(
wR − ψk

)
· ν ds.

Testing the equation −∆
(
ψk − Φk

)
= 0 with the function ψk − Φk, recalling that ψk − Φk = 0 on

s, and integrating it over R2
+ \D+

R , thanks to Lemma C.2 we obtain that

I1(R) =

∫

R
2
+
\D+

R

|∇(Φk − ψk)|2 =

∫

R
2
+
\D+

R

|∇wk|2 → 0 as R → +∞.

Let ηR : R2
+ → R be a smooth cut-off function such that ηR ≡ 0 in D+

R/2, ηR ≡ 1 in R
2
+ \ D+

R ,

0 ≤ ηR ≤ 1, and |∇ηR| ≤ 4
R . Testing the equation −∆(ψk − wR) = 0 in D+

R with the function
ηR(Φk − ψk) we obtain

I2(R) =

∫

D+

R

∇(wR − ψk) · ∇((Φk − ψk)ηR)

so that, in view of the Dirichlet Principle, Lemma C.2 and the fact that wk ∈ Q,

|I2(R)| ≤
∫

D+

R

|∇((Φk − ψk)ηR)|2dx ≤ 2

∫

D+

R\D+

R/2

|∇(Φk − ψk)|2 dx+
32

R2

∫

D+

R\D+

R/2

|Φk − ψk|2 dx

≤ 2

∫

D+

R\D+

R/2

|∇wk|2 dx+ 128

∫

D+

R\D+

R/2

w2
k

|x− e|2 dx→ 0

as R → +∞, where in the last line of the above estimate we have used that 1
R ≤ 2

|x−e| for all

x ∈ D+
R .
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Therefore we need just to study the limit of the quantity
∫
S+

R

∂
∂ν (wR −Φk)ψk as R → +∞. To

this aim, we consider the function

ξ(r) :=

∫ π

0

Φk(r cos t, r sin t) sin(kt) dt, r ≥ 1, (119)

and notice that it satisfies the differential equation ξ′′ + 1
r ξ

′ − k2

r2 ξ = 0 which can be rewritten as
(r1+2k(r−kξ)′)′ = 0 in [1,+∞). Therefore there exists some Cξ ∈ R such that

(
r−kξ(r)

)′
=

Cξ
r1+2k

in [1,+∞).

Integrating the previous equation over [1, r] we obtain that

r−kξ(r)− ξ(1) =
Cξ
2k

(
1− 1

r2k

)
. (120)

From (11), Lemma C.1, and Lemma C.2 it follows that

ξ(r) =

∫ π

0

ψk(r cos t, r sin t) sin(kt) dt+

∫ π

0

(
Φk(r cos t, r sin t)− ψk(r cos t, r sin t)

)
sin(kt) dt

=
π

2
rk +O(r−1), as r → +∞,

and hence r−kξ(r) → π
2 as r → +∞. Letting r → +∞ in (120), this implies that

Cξ

2k = π
2 − ξ(1),

so that
ξ(r) = π

2 r
k +

(
ξ(1)− π

2

)
r−k, ξ′(r) = k π2 r

k−1 + k
(
π
2 − ξ(1)

)
r−k−1 (121)

for all r ≥ 1. In particular, from (121) we have that

π
2 − ξ(1) = π

2 r
2k − rkξ(r), for all r ≥ 1,

whose substitution into (121) yields

ξ′(r) = kπrk−1 − k
ξ(r)

r
, for all r ≥ 1.

On the other hand, differentiating (119) we obtain also

ξ′(r) =
1

r1+k

∫

S+
r

∂Φk
∂ν

ψk ds (122)

so that ∫

S+
r

∂Φk
∂ν

ψk ds = k(πr2k − rkξ(r)) for all r ≥ 1. (123)

Now we turn to

ζR(r) :=

∫ π

0

wR(r cos t, r sin t) sin(kt) dt

which is the k-th Fourier coefficient of the harmonic function wR and hence satisfies, for some
CR ∈ R,

(
r−kζR(r)

)′
= CR

r1+2k in (0, R]. Integrating the previous equation over [r, R] we obtain
that

R−kζR(R)− r−kζR(r) =
CR
2k

(
1

r2k
− 1

R2k

)
, for all r ∈ (0, R).

By regularity of wR we necessarily have that CR = 0. Hence

ζR(r) =
ζR(R)
Rk rk and ζ′R(r) = k ζR(R)

Rk rk−1, for all r ∈ (0, R]. (124)
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From the definition of ζR we have that ζ′R(r) =
1

r1+k

∫
S+
r
∇wR · ν ψk ds. Hence

∫

S+
r

∇wR · ν ψk ds = k ζR(R)
Rk r2k

from which, taking into account the boundary conditions for wR, it follows that
∫

S+

R

∇wR · ν ψk ds = kRkξ(R). (125)

Combining (123), (125), and (121) we conclude that

∫

S+

R

(
∂wR
∂ν

ψk −
∂Φ

∂ν
ψk

)
ds = 2kRkξ(R)− kπR2k = 2k

(
ξ(1)− π

2

)
= −2mk

by virtue of Lemma C.3.

By combining the previous results we obtain the following asymptotics for the eigenvalue vari-
ation.

Theorem C.16. Let Ω be a bounded open set in R2 satisfying (1) and (2). Let N ≥ 1 be such
that the N -th eigenvalue λN of q0 on Ω is simple with associated eigenfunctions having in 0 a zero
of order k with k as in (10). For ε ∈ (0, ε0) let λN (ε) be the N -th eigenvalue of qε on Ω. Then

lim
ε→0+

λN − λN (ε)

ε2k
= −2β2

mk

with β being as in (10) and mk being as in (42) and (44).

In particular, Theorem C.16 and (114) above provide a proof of Theorem 3.1 that is alternative
to the one given in [12].
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L. Abatangelo, V. Felli and C. Léna are partially supported by the project ERC Advanced Grant
2013 n. 339958: “Complex Patterns for Strongly Interacting Dynamical Systems – COMPAT”. L.
Abatangelo and V. Felli are partially supported by the INDAM-GNAMPA 2018 grant “Formula
di monotonia e applicazioni: problemi frazionari e stabilità spettrale rispetto a perturbazioni del
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