This work introduces an accurate linearized model and phase noise spectral analysis of digital bang-bang PLLs, that includes both the reference and the digitally-controlled oscillator (DCO) noise contributions. A time-domain analysis of bang-bang PLLs is leveraged to derive closed-form expressions for the integrated jitter, leading to a precise estimation of the binary phase detector (BPD) equivalent gain. The theoretical predictions differ by less than 1% from the simulation results obtained using a behavioral model, in all typical cases: dominant reference noise, dominant DCO noise, and comparable contributions. An accurate discrete-time model that takes into account the time-variant effect arising from the multirate nature of a digital phase-locked loop (DPLL) is used, along with the provided estimation of the jitter, to predict the output and input-referred phase noise spectra. An excellent match with the simulated spectra is achieved for all the different operating conditions.
A Comprehensive Phase Noise Analysis of Bang-Bang Digital PLLs
Mercandelli M.;Levantino S.;Samori C.
2021-01-01
Abstract
This work introduces an accurate linearized model and phase noise spectral analysis of digital bang-bang PLLs, that includes both the reference and the digitally-controlled oscillator (DCO) noise contributions. A time-domain analysis of bang-bang PLLs is leveraged to derive closed-form expressions for the integrated jitter, leading to a precise estimation of the binary phase detector (BPD) equivalent gain. The theoretical predictions differ by less than 1% from the simulation results obtained using a behavioral model, in all typical cases: dominant reference noise, dominant DCO noise, and comparable contributions. An accurate discrete-time model that takes into account the time-variant effect arising from the multirate nature of a digital phase-locked loop (DPLL) is used, along with the provided estimation of the jitter, to predict the output and input-referred phase noise spectra. An excellent match with the simulated spectra is achieved for all the different operating conditions.File | Dimensione | Formato | |
---|---|---|---|
09406179.pdf
Accesso riservato
Descrizione: Early view
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
4.5 MB
Formato
Adobe PDF
|
4.5 MB | Adobe PDF | Visualizza/Apri |
A_Comprehensive_Phase_Noise_Analysis_of_Bang-Bang_Digital_PLLs.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
3.73 MB
Formato
Adobe PDF
|
3.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.