The calculation of the wheel–rail contact forces is one of the most difficult yet time-consuming processes in multibody system (MBS) simulations for a vehicle-track interaction system. The classical combination of the Hertzian model with the FASTSIM algorithm is the most widely used model in MBS code for railway application and the ‘exact’ solver CONTACT is seldom used due to its high computational cost. A trade-off solution between accuracy and computational efficiency is the simplified and approximate non-Hertzian approach. This paper attempts to compare the influence on MBS simulation for rail vehicle system dynamics of the varied combinations of the classical contact models (i.e. Hertz model and FASTSIM), well-known simplified non-Hertzian model (Kik–Piotrowski model) recently developed improved simplified non-Hertzian models i.e. Extended Kik–Piotrowski and Kalker Book of Tables for Non-Hertzian contact (KBTNH), and the CONTACT algorithm. The results show that all non-Hertzian approaches deviate from the classical Hertzian solutions in both local contact and global dynamics and the KBTNH model provides better agreement with CONTACT than the FASTSIM algorithm for non-elliptic contact conditions considered in this study. A detailed analysis of the causes and influences of the difference due to varied contact models is presented.

Comparison of wheel–rail contact models in the context of multibody system simulation: Hertzian versus non-Hertzian

Liu B.;Bruni S.
2020-01-01

Abstract

The calculation of the wheel–rail contact forces is one of the most difficult yet time-consuming processes in multibody system (MBS) simulations for a vehicle-track interaction system. The classical combination of the Hertzian model with the FASTSIM algorithm is the most widely used model in MBS code for railway application and the ‘exact’ solver CONTACT is seldom used due to its high computational cost. A trade-off solution between accuracy and computational efficiency is the simplified and approximate non-Hertzian approach. This paper attempts to compare the influence on MBS simulation for rail vehicle system dynamics of the varied combinations of the classical contact models (i.e. Hertz model and FASTSIM), well-known simplified non-Hertzian model (Kik–Piotrowski model) recently developed improved simplified non-Hertzian models i.e. Extended Kik–Piotrowski and Kalker Book of Tables for Non-Hertzian contact (KBTNH), and the CONTACT algorithm. The results show that all non-Hertzian approaches deviate from the classical Hertzian solutions in both local contact and global dynamics and the KBTNH model provides better agreement with CONTACT than the FASTSIM algorithm for non-elliptic contact conditions considered in this study. A detailed analysis of the causes and influences of the difference due to varied contact models is presented.
2020
Hertzian contact
multibody system
non-Hertzian contact
online simulation
vehicle dynamics
Wheel–rail contact
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1167881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact