For bilateral teleoperation, the haptic feedback demands the availability of accurate force information transmitted from the remote site. Nevertheless, due to the limitation of the size, the force sensor is usually attached outside of the patient's abdominal cavity for the surgical operation. Hence, it measures not only the interaction forces on the surgical tip but also the surgical tool dynamics. In this letter, a model-free based deep convolutional neural network (DCNN) structure is proposed for the tool dynamics identification, which features fast computation and noise robustness. After the tool dynamics identification using DCNN, the calibration is performed, and the bilateral teleoperation is demonstrated to verify the proposed method. The comparison results prove that the proposed DCNN model promises prominent performance than other methods. Low computational time (0.0031 seconds) is ensured by the rectified linear unit (ReLU) function, and the DCNN approach provides superior accuracy for predicting the noised dynamics force and enable its feasibility for bilateral teleoperation.

Deep Neural Network Approach in Robot Tool Dynamics Identification for Bilateral Teleoperation

Su H.;Qi W.;Ferrigno G.;De Momi E.
2020-01-01

Abstract

For bilateral teleoperation, the haptic feedback demands the availability of accurate force information transmitted from the remote site. Nevertheless, due to the limitation of the size, the force sensor is usually attached outside of the patient's abdominal cavity for the surgical operation. Hence, it measures not only the interaction forces on the surgical tip but also the surgical tool dynamics. In this letter, a model-free based deep convolutional neural network (DCNN) structure is proposed for the tool dynamics identification, which features fast computation and noise robustness. After the tool dynamics identification using DCNN, the calibration is performed, and the bilateral teleoperation is demonstrated to verify the proposed method. The comparison results prove that the proposed DCNN model promises prominent performance than other methods. Low computational time (0.0031 seconds) is ensured by the rectified linear unit (ReLU) function, and the DCNN approach provides superior accuracy for predicting the noised dynamics force and enable its feasibility for bilateral teleoperation.
2020
Bilateral teleoperation
deep neural network
haptics and haptic interfaces
tool dynamics identification
File in questo prodotto:
File Dimensione Formato  
Deep_Neural_Network_Approach_in_Robot_Tool_Dynamics_Identification_for_Bilateral_Teleoperation.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1146599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 128
  • ???jsp.display-item.citation.isi??? 108
social impact