An improved human-robot collaborative control scheme is proposed in a teleoperated minimally invasive surgery scenario, based on a hierarchical operational space formulation of a seven-degree-of-freedom redundant robot. Redundancy is exploited to guarantee a remote center of motion (RCM) constraint and to provide a compliant behavior for the medical staff. Based on the implemented hierarchical control framework, an RCM constraint and a safe constraint are applied to the nullspace motion to achieve the surgical tasks with human-robot interaction. Due to the physical interactions, safety and accuracy of the surgery may be affected. The control framework integrates an adaptive compensator to enhance the accuracy of the surgical tip and to maintain the RCM constraint in a decoupled way avoiding any physical interactions. The system performance is verified on a patient phantom. Compared with the methods proposed in the literature, results show that the accuracy of both the RCM constraint and the surgical tip is improved. The compliant swivel motion of the robot arm is also constrained in a defined area, and the interaction force on the abdominal wall becomes smaller.
Improved Human–Robot Collaborative Control of Redundant Robot for Teleoperated Minimally Invasive Surgery
Su, Hang;Ferrigno, Giancarlo;De Momi, Elena
2019-01-01
Abstract
An improved human-robot collaborative control scheme is proposed in a teleoperated minimally invasive surgery scenario, based on a hierarchical operational space formulation of a seven-degree-of-freedom redundant robot. Redundancy is exploited to guarantee a remote center of motion (RCM) constraint and to provide a compliant behavior for the medical staff. Based on the implemented hierarchical control framework, an RCM constraint and a safe constraint are applied to the nullspace motion to achieve the surgical tasks with human-robot interaction. Due to the physical interactions, safety and accuracy of the surgery may be affected. The control framework integrates an adaptive compensator to enhance the accuracy of the surgical tip and to maintain the RCM constraint in a decoupled way avoiding any physical interactions. The system performance is verified on a patient phantom. Compared with the methods proposed in the literature, results show that the accuracy of both the RCM constraint and the surgical tip is improved. The compliant swivel motion of the robot arm is also constrained in a defined area, and the interaction force on the abdominal wall becomes smaller.File | Dimensione | Formato | |
---|---|---|---|
finalversion.pdf
accesso aperto
:
Pre-Print (o Pre-Refereeing)
Dimensione
1.86 MB
Formato
Adobe PDF
|
1.86 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.