This paper describes a 23-GHz digital bang-bang phase-locked loop (PLL) fabricated in 65-nm CMOS for millimeter-wave frequency-modulated continuous-wave radars. The presented circuit aims to generate a fast sawtooth chirp signal that grants significant advantages with respect to the more conventional triangular waveform. Such a signal, however, features a very large bandwidth that requires the adoption of a two-point injection scheme. This paper, after intuitively discussing how the nonlinearity of the digitally controlled oscillator affects the accuracy of frequency modulation, presents a novel automatic pre-distortion engine, operating fully in background, which linearizes the tuning characteristic. The 19.7-mA fractional-N PLL having an rms jitter of 213 fs and an in-band fractional spur of -58 dBc is capable of synthesizing fast chirps with 173-MHz/μs maximum slope and an idle time of less than 200 ns after an abrupt frequency step with no over or undershoot.

A 23-GHz Low-Phase-Noise Digital Bang-Bang PLL for Fast Triangular and Sawtooth Chirp Modulation

Cherniak, Dmytro;Grimaldi, Luigi;Bertulessi, Luca;Samori, Carlo;Levantino, Salvatore
2018

Abstract

This paper describes a 23-GHz digital bang-bang phase-locked loop (PLL) fabricated in 65-nm CMOS for millimeter-wave frequency-modulated continuous-wave radars. The presented circuit aims to generate a fast sawtooth chirp signal that grants significant advantages with respect to the more conventional triangular waveform. Such a signal, however, features a very large bandwidth that requires the adoption of a two-point injection scheme. This paper, after intuitively discussing how the nonlinearity of the digitally controlled oscillator affects the accuracy of frequency modulation, presents a novel automatic pre-distortion engine, operating fully in background, which linearizes the tuning characteristic. The 19.7-mA fractional-N PLL having an rms jitter of 213 fs and an in-band fractional spur of -58 dBc is capable of synthesizing fast chirps with 173-MHz/μs maximum slope and an idle time of less than 200 ns after an abrupt frequency step with no over or undershoot.
CMOS, radar, PLL, LMS, nonlinearity
File in questo prodotto:
File Dimensione Formato  
Cherniak_2018.pdf

accesso aperto

Descrizione: Paper
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 4.3 MB
Formato Adobe PDF
4.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1066170
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 15
social impact