This paper presents the results of a preliminary study aimed at assessing the crack sealing capacity in chloride environments of different concrete mixtures, incorporating supplementary cementitious materials as well as self-healing enhancing crystalline admixtures. For each addition, also including pulverized fuel ash and silica fume, different contents were taken into consideration. Cylinder specimens were pre-cracked in splitting up to three different crack-opening ranges, simulating different service conditions, and then exposed to different conditioning environments, also containing different concentrations of sodium chloride and including both permanent immersion and wet/dry cycles. Healing conditioning was performed up to three months and crack sealing was visually inspected and quantified via image analysis procedures, monthly. Optimum dosages of each cement substitute/addition were quantified, also considering, besides the healing capacity, also the fresh state performance and compressive strength development. The good performance of mixes with crystalline admixture even under open-air exposure, as well as of other investigated mixes with reference to crack openings and exposure conditions, paves the way to revise the significance of a serviceability design parameter such as the maximum allowable crack width as a function of the exposure with the concept of a sealable crack width.
Crack sealing capacity in chloride-rich environments of mortars containing different cement substitutes and crystalline admixtures
Cuenca, Estefania;Ferrara, Liberato
2018-01-01
Abstract
This paper presents the results of a preliminary study aimed at assessing the crack sealing capacity in chloride environments of different concrete mixtures, incorporating supplementary cementitious materials as well as self-healing enhancing crystalline admixtures. For each addition, also including pulverized fuel ash and silica fume, different contents were taken into consideration. Cylinder specimens were pre-cracked in splitting up to three different crack-opening ranges, simulating different service conditions, and then exposed to different conditioning environments, also containing different concentrations of sodium chloride and including both permanent immersion and wet/dry cycles. Healing conditioning was performed up to three months and crack sealing was visually inspected and quantified via image analysis procedures, monthly. Optimum dosages of each cement substitute/addition were quantified, also considering, besides the healing capacity, also the fresh state performance and compressive strength development. The good performance of mixes with crystalline admixture even under open-air exposure, as well as of other investigated mixes with reference to crack openings and exposure conditions, paves the way to revise the significance of a serviceability design parameter such as the maximum allowable crack width as a function of the exposure with the concept of a sealable crack width.File | Dimensione | Formato | |
---|---|---|---|
Crack sealing capacity in chloride rich environments of mortars containing different cement substitutes and crystalline admixtures revised.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.