Steel-free pre-stressed reinforced concrete may be used in aggressive environments to increase the durability of structural elements and to limit the carbon footprint by replacing steel with high-strength fibre composites. The design of a 10-m long steel-free precast fibre-reinforced concrete slab, pre-stressed with basalt-fibre reinforced polymer (BFRP) bars and shear-reinforced with glass-fibre reinforced polymer bars, is presented in this paper. Non-linear viscoelastic and elastic-plastic models have been employed for the prediction of the service and ultimate limit state flexural behaviour, respectively. Preliminary tests on the employed materials and a 3-point load test on the slab element are presented, together with indications on its manufacturing process. The proposed numerical analysis is validated against the experimental results.
Full-scale testing and numerical analysis of a precast fibre reinforced self-compacting concrete slab pre-stressed with basalt fibre reinforced polymer bars
DAL LAGO, BRUNO ALBERTO;FERRARA, LIBERATO;
2017-01-01
Abstract
Steel-free pre-stressed reinforced concrete may be used in aggressive environments to increase the durability of structural elements and to limit the carbon footprint by replacing steel with high-strength fibre composites. The design of a 10-m long steel-free precast fibre-reinforced concrete slab, pre-stressed with basalt-fibre reinforced polymer (BFRP) bars and shear-reinforced with glass-fibre reinforced polymer bars, is presented in this paper. Non-linear viscoelastic and elastic-plastic models have been employed for the prediction of the service and ultimate limit state flexural behaviour, respectively. Preliminary tests on the employed materials and a 3-point load test on the slab element are presented, together with indications on its manufacturing process. The proposed numerical analysis is validated against the experimental results.File | Dimensione | Formato | |
---|---|---|---|
2nd_review_Manuscript.pdf
accesso aperto
:
Pre-Print (o Pre-Refereeing)
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.