The present paper deals with modelling of complex microgrids and the design of advanced control strategies of sliding mode type to control them in a decentralized way. More specifically, the model of a microgrid including several distributed generation units (DGus), connected according to an arbitrary complex and meshed topology, and working in islanded operation mode (IOM), is proposed. Moreover, it takes into account all the connection line parameters and it is affected by unknown load dynamics, nonlinearities and unavoidable modelling uncertainties, which make sliding mode control algorithms suitable to solve the considered control problem. Then, a decentralized second order sliding mode (SOSM) control scheme, based on the Suboptimal algorithm is designed for each DGu. The overall control scheme is theoretically analyzed, proving the asymptotic stability of the whole microgrid system. Simulation results confirm the effectiveness of the proposed control approach.

Decentralized sliding mode control of islanded AC microgrids with arbitrary topology

Incremona, Gian Paolo;
2017-01-01

Abstract

The present paper deals with modelling of complex microgrids and the design of advanced control strategies of sliding mode type to control them in a decentralized way. More specifically, the model of a microgrid including several distributed generation units (DGus), connected according to an arbitrary complex and meshed topology, and working in islanded operation mode (IOM), is proposed. Moreover, it takes into account all the connection line parameters and it is affected by unknown load dynamics, nonlinearities and unavoidable modelling uncertainties, which make sliding mode control algorithms suitable to solve the considered control problem. Then, a decentralized second order sliding mode (SOSM) control scheme, based on the Suboptimal algorithm is designed for each DGu. The overall control scheme is theoretically analyzed, proving the asymptotic stability of the whole microgrid system. Simulation results confirm the effectiveness of the proposed control approach.
2017
Microgrids, Voltage control, Sliding mode control, Algorithm design and analysis, Frequency control, Uncertainty
File in questo prodotto:
File Dimensione Formato  
microgrids_arbitrary_topology_smc_TIE_j.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri
11311-1027682 Incremona.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 24.15 MB
Formato Adobe PDF
24.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1027682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 74
social impact