The variety of today's architectures forces programmers to spend a great deal of time porting and tuning application codes across different platforms. Compilers themselves need additional tuning, which has considerable complexity as the standard optimization levels, usually designed for the average case and the specific target architecture, often fail to bring the best results. This article proposes COBAYN: Compiler autotuning framework using Bayesian Networks, an approach for a compiler autotuning methodology using machine learning to speed up application performance and to reduce the cost of the compiler optimization phases. The proposed framework is based on the application characterization done dynamically by using independent microarchitecture features and Bayesian networks. The article also presents an evaluation based on using static analysis and hybrid feature collection approaches. In addition, the article compares Bayesian networks with respect to several state-of-the-art machine-learning models. Experiments were carried out on an ARM embedded platform and GCC compiler by considering two benchmark suites with 39 applications. The set of compiler configurations, selected by the model (less than 7% of the search space), demonstrated an application performance speedup of up to 4.6× on Polybench (1.85× on average) and 3.1× on cBench (1.54× on average) with respect to standard optimization levels. Moreover, the comparison of the proposed technique with (i) random iterative compilation, (ii) machine learning-based iterative compilation, and (iii) noniterative predictive modeling techniques shows, on average, 1.2×, 1.37×, and 1.48×speedup, respectively. Finally, the proposed method demonstrates 4×and 3×speedup, respectively, on cBench and Polybench in terms of exploration efficiency given the same quality of the solutions generated by the random iterative compilation model.

COBAYN: Compiler autotuning framework using Bayesian networks

ASHOURI, AMIR HOSSEIN;PALERMO, GIANLUCA;SILVANO, CRISTINA
2016-01-01

Abstract

The variety of today's architectures forces programmers to spend a great deal of time porting and tuning application codes across different platforms. Compilers themselves need additional tuning, which has considerable complexity as the standard optimization levels, usually designed for the average case and the specific target architecture, often fail to bring the best results. This article proposes COBAYN: Compiler autotuning framework using Bayesian Networks, an approach for a compiler autotuning methodology using machine learning to speed up application performance and to reduce the cost of the compiler optimization phases. The proposed framework is based on the application characterization done dynamically by using independent microarchitecture features and Bayesian networks. The article also presents an evaluation based on using static analysis and hybrid feature collection approaches. In addition, the article compares Bayesian networks with respect to several state-of-the-art machine-learning models. Experiments were carried out on an ARM embedded platform and GCC compiler by considering two benchmark suites with 39 applications. The set of compiler configurations, selected by the model (less than 7% of the search space), demonstrated an application performance speedup of up to 4.6× on Polybench (1.85× on average) and 3.1× on cBench (1.54× on average) with respect to standard optimization levels. Moreover, the comparison of the proposed technique with (i) random iterative compilation, (ii) machine learning-based iterative compilation, and (iii) noniterative predictive modeling techniques shows, on average, 1.2×, 1.37×, and 1.48×speedup, respectively. Finally, the proposed method demonstrates 4×and 3×speedup, respectively, on cBench and Polybench in terms of exploration efficiency given the same quality of the solutions generated by the random iterative compilation model.
2016
Bayesian networks; Design space exploration; Statistical inference; Software; Information Systems; Hardware and Architecture
File in questo prodotto:
File Dimensione Formato  
COBAYN_green_open_access.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 672.36 kB
Formato Adobe PDF
672.36 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1026239
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 52
social impact