
This is the post peer-review accepted manuscript of:

Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park,
John Cavazos, Cristina Silvano
COBAYN: Compiler Autotuning Framework using Bayesian Networks
ACM Transactions on Architecture and Code Optimization

The published version is available online at: http://dx.doi.org/10.1145/2928270

c©2018 ACM. Personal use of this material is permitted. Permission from the editor must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

A
COBAYN: Compiler Autotuning Framework using Bayesian Networks

AMIR HOSSEIN ASHOURI, Politecnico di Milano, ITALY
GIOVANNI MARIANI, IBM, The NETHERLANDS
GIANLUCA PALERMO, Politecnico di Milano, ITALY
EUNJUNG PARK, Los Alamos National Laboratory, USA
JOHN CAVAZOS, University of Delaware, USA
CRISTINA SILVANO, Politecnico di Milano, ITALY

The variety of today’s architectures forces programmers to spend efforts for porting and tuning application codes
across different platforms. Compilers themselves need additional tuning which has considerable complexity as the
standard optimization levels, usually designed for the average case and the specific target architecture, quite often
fail to bring the best results.

This paper proposes COBAYN: COmpiler autotuning framework using BAYesian Networks, an approach for a
compiler autotuning methodology using machine learning to speed up application performance and to reduce the
cost of the compiler optimization phases. The proposed framework is based on the application characterization done
dynamically by using independent micro-architecture features and Bayesian networks. The paper also presents an
evaluation based on using static analysis and hybrid feature collection approaches. In addition, the paper compares
Bayesian networks with respect to several state-of-the-art machine-learning models.

Experiments were carried out on an ARM embedded platform and GCC compiler by considering two benchmark
suites with 39 applications. The set of compiler configurations selected by the model (less than 7% of the search space),
demonstrated an application performance speedup of up to 4.6× on Polybench (1.85× on average) and 3.1× on cBench
(1.54× on average) with respect to standard optimization levels. Moreover, the comparison of the proposed technique
with (i) random iterative compilation, (ii) machine learning-based iterative compilation and (iii) non-iterative pre-
dictive modeling techniques, shows on average, 1.2×, 1.37× and 1.48× speedup, respectively. Finally, the proposed
method demonstrates 4× and 3× speedup, respectively on cBench and Polybench, in terms of exploration efficiency
given the same quality of the solutions generated by the random iterative compilation model.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Compilers

CCS Concepts: rSoftware and its engineering → Compilers; rComputing methodologies → Supervised
learning; rMathematics of computing→ Bayesian networks;

General Terms: Autotuning, Compilers, Machine Learning, Performance Evaluation

Additional Key Words and Phrases: Bayesian Networks, Statistical Inference, Design Space Exploration

ACM Reference Format:
Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John Cavazos and Cristina Silvano,
2015. COBAYN: Compiler Autotuning using Bayesian Networks ACM Trans. Architec. Code Optim. 0, N, Article A (
2015), 25 pages.
DOI: http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
Usually, software applications are developed in a high-level programming language (e.g. C,
C++) and then passed through the compilation phase to get the executable binary. Optimizing
the second phase (compiler optimization) plays an important role for the performance metrics.
In other words, enabling compiler optimization parameters (e.g. loop unrolling, register allo-
cation, etc.) might lead to substantial benefits in several performance metrics. Depending on
the strategy, these performance metrics could be execution time, code size or power consump-

Author’s addresses: Amir H. Ashouri, Via Giuseppe Ponzio, 34/5, DEIB, Politecnico di Milano, ITALY
ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a
national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes only.
c© 2015 ACM. 1544-3566/2015/-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:2 A. H. Ashouri et al.

tion. A holistic exploration approach to trade-off these metrics also represents a challenging
problem [Palermo et al. 2005].

Application developers usually rely on compiler intelligence for software optimization, but
they are unaware of how the compiler itself does the job. Compiler interface usually has some
standard optimization levels which enable the user to automatically include a set of prede-
fined optimization sequences for the compilation process [Hoste and Eeckhout 2008]. These
standard optimizations (e.g. -O1, -O2, -O3 or -Os) are known to be beneficial for performance
(or code size) in most cases. In addition to the above-mentioned standard optimizations, there
are other compiler optimizations which are not included in the predefined optimization levels.
Their effects on the software are quite complex and mostly depend on the features of the
target application. Therefore, it is rather hard to decide whether to enable specific compiler
optimizations on the target code. Considering application-specific embedded systems, the
compiler optimization task becomes even more crucial because the application is compiled
once and then deployed on millions of devices on the market.
So far, researchers proposed two main approaches for tackling the problem of identifying
the best compiler optimizations: i) iterative compilation [Chen et al. 2012] and ii) machine-
learning predictive modeling [Agakov et al. 2006]. The former approach relies on several re-
compilation phases and then selecting the best set of optimizations. Obviously this approach,
although effective, has high overhead as it needs to be evaluated iteratively. The latter
approach focuses on building machine-learning predictive models to predict the best set of
compiler optimizations. It relies on software features that are collected either offline or online.
Once the model has been trained, given a target application, it can predict a sequence of
compiler optimization options to maximize performance. Machine learning approaches need
fewer compilation try-outs, but the downside is typically represented by the performance of
the final execution binary, which is worse than the one found with iterative compilation.

In this work1, we propose an approach to tackle the problem of identifying the compiler
optimizations that maximize the performance of a target application. Differently from previ-
ous approaches, the proposed work starts by applying a statistical methodology to infer the
probability distribution of the compiler optimizations to be enabled. Then, we start to drive
the iterative compilation process by sampling from this probability distribution. We use two
major sets of training application suites to learn the statistical relations between application
features and compiler optimizations. To the best of our knowledge, in this work, Bayesian Net-
works (BN) are used for the first time in this field to build the statistical model. Given a new
application, its features are fed into the machine-learning algorithm as evidence on the distri-
bution. This evidence imposes a bias on the distribution, and because compiler optimizations
are correlated with the software features, we can iteratively sample the distribution obtain-
ing the most promising compiler optimizations, by then exploiting an iterative compilation
process.

The experiments carried out on an embedded ARM-based platform outperformed both stan-
dard optimization levels and the state-of-the-art iterative and not iterative (based on predic-
tion models) compilation techniques, while using the same number of evaluations. Moreover,
the proposed techniques demonstrated significant exploration efficiency improvement of up
to 4× speedup compared with random iterative compilation when targeting the same perfor-
mance. To summarize, our work contributes to the following:

1This article is an extended version of our previous work [Ashouri et al. 2014], providing additional details about i)
the different feature selection techniques and introducing a new method by combining them as hybrid, ii) revising the
machine-learning part, taking into account different aspects of statistical tuning and their performance comparisons,
iii) adding more benchmarks and data-sets, and iv) introducing new chapter offering a holistic comparison with
different state-of-the-arts machine-learning algorithms.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:3

— The introduction of a BN capable of capturing the correlation between the application fea-
tures and the compiler optimizations. This enables us to represent the relation by an acyclic
graph, which can be easily analyzed graphically.

— The integration of the BN model in a compiler optimization framework. Given a new pro-
gram, the probability distribution of the best compiler optimizations can be inferred by
means of BN to focus on the optimization itself.

— The integration of both dynamic and static analysis feature collections in the framework as
hybrid features.

Furthermore, the experimental evaluation section reports the assessment of the proposed
methodology on an embedded ARM-based platform and the comparison of the proposed
methodology with several state-of-the-art machine learning algorithms on 39 different bench-
mark applications.

The remainder of the paper is organized as follows. Section 2 presents an review of recent
related literature. Section 3 presents how the BN model can infer the probability of the dis-
tribution. Section 3.1 presents different techniques for collecting program features. Section 4
elaborates on the proposed framework. Sections 4.4 and 4.5 will introduce the results obtained
on the application suites selected. Finally Section 4.6 presents the comparison of the proposed
methodology with state-of-the-art models.

2. PREVIOUS WORK
Optimizations carried out at compilation have been broadly used, mainly in embedded com-
puting applications. This makes such techniques especially interesting, and researchers are
investigating more efficient techniques for identifying the best compiler optimizations to be
applied given the target architecture. There are two major classes of optimization in the field
of compiler: (i) The problem of selecting the best compiler optimizations and (ii) The phase-
ordering problem of compiler optimizations. As the target of this work is in the scope of selec-
tion, here we mostly refer to these areas. However, there are notable works to be mentioned
that support the seminal concepts of the current work.

The related work in this field can be categorized into two sub-classes: (a) iterative com-
pilation [Bodin et al. 1998] and (b) machine-learning based approaches [Cooper et al. 1999;
Kisuki et al. 2000]. Nonetheless, these two approaches have also been combined in many ways
[Agakov et al. 2006] that they cannot be distinguished easily.

Iterative compilation was introduced as a technique capable of outperforming static hand-
crafted optimization sequences, those usually exposed by compiler interfaces as optimization
levels. Since its introduction [Bodin et al. 1998; Kisuki et al. 1999], the goal of iterative com-
pilation has been to identify the most appropriate compiler passes for a target application.

More recent literature discusses the use of down-sampling techniques to reduce the search
space [Purini and Jain 2013] with the goal of identifying compiler optimization sequences
for each application. Other authors exploit iterative compilation jointly with architectural de-
sign space exploration for VLIW architectures [Ashouri et al. 2013]. The intuition was that
the performance of a computer architecture depends on the executable binary which in turn,
depends on the optimizations applied at compilation time. Thus, by studying the two prob-
lems jointly, the final architecture is optimal in terms of the compilation technique in use and
the effects of different compiler optimizations are identified at the early design stages. The
authors of [Tang et al. 2015], proposed an autotuning framework targeting scale-free sparse
matrix-vector multiplication by employing 2D jagged partitioning and tiling to achieve good
cache efficiency and work balancing. Furthermore, [Mehta and Yew 2015] have addressed
compiler scalability by reducing the effective number of statements and dependencies as seen
by the compiler through Integer Linear Programming (ILP). Petabricks [Ansel et al. 2009] has
been introduced as a language for programmers to naturally express algorithmic choices ex-
plicitly so as to empower the compiler to perform deeper optimizations. They have developed

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:4 A. H. Ashouri et al.

an autotuner that is fed by a Choice Dependency Graph and interacts with the parallel run-
time to optimize the binary code. On a High Performance Computing (HPC) level, [Schkufza
et al. 2014] introduced an aggressive floating-point optimization using random search tech-
niques to both eliminate the dependence on expert-written optimization rules and allow a user
to customize the extent to which precision is sacrificed in favor of performance. OpenTuner
[Ansel et al. 2014], is a framework for building domain-specific multi-objective program au-
totuners. It introduces the concept of ensembles of search techniques in autotuning, which
allow many search techniques to work together to find an optimal solution and provide a
more robust search than a single technique alone. Another recent iterative compilation is in-
troduced by [Fang et al. 2015]. Authors proposed iterative optimization for the data center
(IODC) by spawning different combinations across workers and recollect performance statis-
tics at the master, which then evolves to the optimum combination of compiler optimizations
and to manage the cost and benefits.

Given that compilation is a time-consuming task, several groups proposed techniques to
predict the best compiler optimization sequences rather than applying a trial-and-error pro-
cess, such as in iterative compilation. These prediction methodologies are generally based on
machine-learning techniques [Cooper et al. 1999; Stephenson et al. 2003; Agakov et al. 2006;
Cavazos et al. 2007]. Milepost [Fursin et al. 2011] is a machine-learning based compiler that
automatically adjusts its optimization heuristics to improve the execution time, code size, or
compilation time of specific programs on different architectures [Fursin et al. 2008]. Authors
in [Leather et al. 2009], introduced a methodology for learning static code features to be used
within compiler heuristics that drive the optimization process. [Ding et al. 2015] have pro-
posed a two-level approach on providing insights into the analysis of variable input. Models
are constructed as a general means of automatically determining what algorithmic optimiza-
tion to use when different optimization strategies suit different inputs .[Martins et al. 2016]
proposed good sequence of optimizations in application dependent mode by clustering Design
Space Exploration (DSE) technique directed by genetic algorithms.

There are a few research works that tackled the ordering of the optimizations using
machine-learning-based approaches [Kulkarni and Cavazos 2012; Ashouri et al. 2016]. These
are namely, the non-iterative compilation approaches to predict the immediate speedup cor-
responding to the next-best optimization to be applied given the current state of the code.
In particular, [Kulkarni and Cavazos 2012] used Neuro-Evolution for Augmenting Topologies
(NEAT) on Jikes dynamic compiler and came up with sets of good optimization ordering. They
proposed immediate speedup prediction given the current status of the source-code and de-
fine certain stop-condition rules to complete the final predicted sequence at each iteration.
Other works [Kulkarni et al. 2009] have approached the problem by exhaustively exploring
the ordering space at function granularity level and evaluate their methodology with search-
tree algorithms. This exhaustive enumeration allowed them to construct probabilities of en-
abling/disabling interactions between different optimization passes in general rather than
specific to any program.

There are works using similar predictive modeling technique as proposed in [Park et al.
2013] with static program features instead of hardware-dependent features. [Park et al. 2012]
used Control Flow Graph (CFG) with graph kernel learning to construct a machine learning
model. First, they construct CFGs by using the LLVM compiler and convert the CFGs to Short-
est Path Graphs (SPGs) by using the Floyd-Warshall algorithm. Then, they apply the shortest
graph kernel method [Borgwardt and Kriegel 2005] to compare each one of the possible pairs
of the SPGs and calculate a similarity score of two graphs. The calculated similarity scores for
all pairs are saved into a matrix and directly fed into the selected machine-learning algorithm,
specifically SVMs in their work. In [Park et al. 2014], they use user-defined patterns as pro-
gram features. They use a pattern-driven system named HERCULES [Kartsaklis et al. 2012]
to derive arbitrary patterns coming from users. They focused on defining patterns related to

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:5

loops, for example, the number of loops having memory accesses, having loop-carried depen-
dencies, or certain types of data dependencies. Both works use static program features mainly
focusing on loop and instruction mixes. Although our static features do not include direct loop
information, we use other types of program features, such as memory footprint, memory reuse
distances, and ranch predictability. Our work also differs from previous literature in forms of
the machine-learning algorithm used and the target compiler framework. They use SVMs and
the models are targeted to polyhedral optimization space, whereas we use statistical analysis
and BN, and focus on the GCC optimization space.

Our approach is significantly different from the previous ones given that it applies a statis-
tical methodology to learn the relationships between application features and compiler opti-
mizations as well as between different compiler optimizations where machine-learning tech-
niques are used to capture the probability distribution of different compiler transformations.
In this work, we propose the use of BN as a framework enabling statistical inference on the
probability distribution given the evidence of application features. Given a target application,
its features are fed to Bayesian Networks to induce an application-specific bias on the proba-
bility distribution of compiler optimizations.

Most recent machine-learning works aim at the generation of prediction models that, given
a target application, predict the performance of the application for any set of compiler trans-
formations applied to it. In contrast, in our work the machine-learning methodology aims
directly at predicting the best compiler optimizations to be applied for a target application
without going through the predictions of the resulting application performance.

Additionally, in our approach, program features are dynamic and obtained through micro-
architecture-independent characterization [Hoste and Eeckhout 2007] and compared with the
results using the static profiling [Fursin et al. 2008]. The adoption of dynamic profiling pro-
vides insight into the actual program execution with the purpose of giving more weight to
the code segments executed more often (i.e. code segments whose optimization would lead to
higher benefits according to Amdahl’s law).

3. PROPOSED METHODOLOGY
The main goal of the proposed approach is to identify the best compiler optimizations to be
applied to a target application. Each application is passed through a characterization phase
that generates a parametric representation of the application under analysis in terms of its
main features. These features are pre-processed by means of statistical dimension reduction
techniques to identify a more compact representation, while not loosing important informa-
tion. A statistical model based on BN correlates these reduced representations to the compiler
optimizations to maximize application performance.

The optimization flow is shown in Figure 1 and consists of two main phases. During the
initial training phase, the Bayesian network is learned on the base of a set of training ap-
plications (see Figure 1a). During the exploitation phase, new applications are optimized by
exploiting the knowledge stored in the Bayesian Network (see an example of a BN topology in
Figure 3).

During both phases, an optimization process is necessary to identify the best compiler opti-
mizations to achieve the best performance. This is done for learning purposes during the train-
ing phase and for optimization purposes during the exploitation phase. To implement the op-
timization process, a Design Space Exploration (DSE) engine has been used. The DSE engine
automatically compiles, executes and measures application performance by enabling/disabling
different compiler optimizations. Which compiler optimizations will be enabled is decided in
the Design of Experiments (DoE) phase. In our approach, the DoE is obtained by sampling
from a given probability distribution that is either a uniform distribution (during the training
phase as in Figure 1a) or an application-specific distribution inferred through the BN (during
the exploitation phase as in Figure 1b).

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:6 A. H. Ashouri et al.

(a) Training the Bayesian network (b) Optimization process for a new target application

Fig. 1: Overview of the proposed methodology.

The uniform distribution adopted during the training phase allows us to explore the com-
piler optimization space O uniformly to learn what the most promising regions of this space
are. The application-specific distribution used during the exploitation phase allows us to speed
up the optimization by focusing on the most promising region of the compiler optimization
space O.

3.1. Applying Program Characterization
The classic supervised Machine Learning (ML) approach deals with fitting a model exploit-
ing a function f of program characterization. Function f might use a variety of compari-
son/similarity functions, such as nearest-neighbor and graph-kernels. To obtain a more ac-
curate fitting, compiler researchers have been trying to understand the behavior of pro-
grams/kernels better and derive a feature vector that represents pair functionality efficiently.
As a rule of thumb, the derived feature vector must be i) representative enough of its pro-
gram/kernel, and ii) different programs/kernels must not have the same feature vectors as
this will confuse the subsequent machine-learning process. Thus, building a huge non-efficient
feature vector slows down the ML process and obtain less-precision.

Another goal of this work is to exploit the efficient use of different program characteriza-
tion techniques and demonstrate their performance and effectiveness. Three characterization
techniques have been selected among state-of-the-art works, namely, i) dynamic feature selec-
tion using MICA [Hoste and Eeckhout 2007], ii) static analysis using MilePost [Fursin et al.
2008] framework, and iii) our handcrafted combination of those two as hybrid analysis.

MICA. Microarchitecture-independent workload characterization represents a recent work
on dynamic workload characterization [Hoste and Eeckhout 2007]. It is a plugin for the Linux-
PIN tool [Luk et al. 2005] and is capable of characterizing the fed kernels independently from
its running architecture as it monitors the non-hardware features of the kernels. This fea-
ture is of interest for targeting embedded domain as one might not be able to exploit PIN
tools on the board. The main categories of MICA include Instruction-Level-Parallelism (ILP),
Instruction Mix (ITypes), Branch Predictability (PPM), Register Traffic (REG), Data Stream
Stride (Stride), Instruction and Data Memory Footprint (MEMFootprint) and Memory Reuse
Distances (MEMReusedist).

MilePost. This recent tool [Fursin et al. 2011; Fursin et al. 2008] was built as a plugin
on top of GCC to capture static features of the programs. One advantage of static analysis is
that the compiler researchers do not have to run the actual binary just like what they do in a
dynamic feature technique. On the other hand, static-analysis techniques fail to capture any
correlations when different data streams are involved as input dataset.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:7

Hybrid. The third characterization technique consists of the combination of the two pre-
vious ones. We believe that, in some cases, hybrid feature selection can capture the kernel
behaviors better as it takes into account both feature-selection methods.

3.2. Dimension-Reduction Techniques
In the proposed approach, the dimension-reduction process is important for two main reasons:
a) it eliminates the noise that might perturb further analyses, and b) it significantly reduces
the training time of the BN. The techniques used are Principal Component Analysis (PCA)
and Exploratory Factor Analysis (EFA). The experimental results show that the selection of
a good dimension-reduction technique has a significant impact on the final model quality. In
the original work proposed in [Ashouri et al. 2014], PCA was used. In this work, we changed
the model by exploiting Exploratory Factor Analysis (EFA) as explained in the following para-
graphs. Experimental results will show the benefits of using EFA with respect to PCA for the
specific problem addressed herein. For a quantitative comparison the readers is referred to
Section 4.4 Table V.

Let γ be a characterization vector storing all data of an application run. This vector stores
l variables to account for either the static, dynamic or both analyses. Let us consider a set of
known application profiles A consisting of m vectors γ. The application profiles can be orga-
nized in a matrix P with m rows and l columns. Each vector γ (i.e. a row in P) includes a large
set of characteristics, such as the instruction count per instruction type (for both static and
dynamic analysis), information on the memory access pattern and information characterizing
the control flow (e.g. the number and length of the basic blocks, average and maximum loop
nesting, etc.). Many of these application characteristics (columns of matrix P) are correlated
to each other in a complex way. A simple example of this correlation is the instruction mix
information collected during the static analysis and the instruction mix information collected
during the dynamic profiling (even though these are not completely the same). A less intuitive
example is between the distribution of basic block lengths and data related to the instruc-
tion memory reuse distance. The presence of many correlated columns in P implies that the
information stored in a vector γ can be well represented with a vector α of smaller size.

Both PCA and EFA are statistical techniques aimed at identifying a way to represent γ
with a shorter vector α while minimizing the information loss. Nevertheless, they rely on
different concepts for organizing this reduction [Thompson 2002; Gorsuch 1988]. In both cases,
output values are derived by applying the dimension reduction and are no longer directly
representing a certain feature. While in PCA the components are given by a combination of
the observed features, in EFA the factors are representing the hidden process behind the
feature generation. In both cases, there is no way to indicate by name the output columns,
since they are not directly observable.

In PCA, the goal is to identify a summary of γ. To this end, a second vector ρ of the same
length of γ (i.e. l) is organized by a variable change. Specifically, the elements of ρ are obtained
through a linear combination of the elements in γ. The way to combine the elements of γ for
obtaining ρ is decided upon the analysis of the matrix P , and is such that all elements in ρ
are orthogonal (i.e. uncorrelated) and are sorted by their variance. Thus the first elements
of ρ (also named principal components) carry most of the information of γ. The reduction
can be obtained by generating a vector α to keep only the first most significant principal
components in ρ, because the least significant ones carry little information content. Note that
principal components in ρ (thus in α) are not meant to have a meaning; they are only used to
summarize the vector γ as a signature.

In EFA, the elements in the vector of reduced size are meant to explain the structure
underlying the variables γ, while α, represents a vector of latent variables that cannot be
directly observed. The variables γ are expected to be a linear combination of the variables
in α. In EFA, this relationship explains the correlation between the different variables in γ;

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:8 A. H. Ashouri et al.

that is, correlated variables in γ are likely to depend on the same hidden variable in α. The
relationship between the latent α and the observed variables is regressed by exploiting the
maximum likely method based on the data in matrix P .

When adopting PCA, each variable in α tends to be a mixture of all variables in γ. There-
fore, it is rather hard to tell what a component represents. When adopting EFA instead, the
components α tend to depend on a smaller set of elements in γ that are correlated with each
others. That is, when applying EFA, α is a compressed representation of γ, where elements
in γ that are correlated (i.e. that carry the same information) are compressed into a reduced
number of elements in α. Note that reducing the profile size by means of EFA results in a
α that better describes the type of application under analysis in reference to PCA [Jin and
Cheng 2008].

Consequently, having obtained γ through any of the characterization techniques, a pre-
processing filtering should be applied to ensure that the least noise has come through and
the final P is eligible to be summarized by EFA. That implies manually i) removing the zero
columns in l and ii) removing the redundant columns of l given that no column l is a linear
combination of another l. In contrast, the algorithmic approach to tackle this is that P needs
to be transformed, as to obtain the final γ in positive-definite covariance form [Bhatia 2009].
Different techniques have been described in the literature on how to transform a non-positive-
definite matrix to a positive-definite one which exceeds the scope of this paper, but interested
readers can refer to [Lee and Mathews 1994; Tanaka and Nakata 2014] or use packages in R
statistical tool [R Gentleman 2012] i.e., nearPD to compute nearest positive definite matrix.

3.3. Bayesian Networks
Bayesian Networks are powerful to represent the probability distribution of different variables
that characterize a certain phenomenon. The phenomenon to be investigated in this work is
the optimality of compiler optimization sequences.

Let us define a Boolean vector o, whose elements oi are the different compiler optimizations.
Each optimization oi can be either enabled, oi = 1, or disabled, oi = 0. In this work, the phase
ordering problem [Kulkarni et al. 2009] is not taken into account. but rather we consider
how different optimizations oi are organized in a predefined order embedded in the compiler.
A compiler optimization sequence represented by the vector o belongs to the n size Boolean
space O = {0, 1}n, where n represents the number of compiler optimizations under study.

An application is parametrically represented by the vector α of the k reduced components
computed either via PCA or via EFA from its software features. Elements αi in vector α
generally belong to the continuous domain.

The optimal compiler optimization sequence ō ∈ O that maximizes the performance of an
application is generally unknown. However it is known that the effects of a compiler optimiza-
tion oi might depend on whether another optimization oj has been applied. Additionally, it is
known that the compiler optimization sequence that maximizes the performance of a given
application depends on the application itself.

The reason why the optimal compiler optimization sequence ō is unknown a priory is be-
cause it is not possible to capture, in a deterministic way, the dependencies among the vari-
ables in the vectors ō and α. There is no way to identify an analytic model to exactly fit the
vector function ō(α). As a matter of fact, the best optimization sequence ō depends also on
other factors that are somewhat outside our comprehension, the unknown. It is exactly to deal
with the unknown that we propose not to predict the best optimization sequence ō but rather to
infer its probability distribution. The uncertainty stored in the probability distribution models
the effects of the unknown.

As underlying probabilistic model, we selected BN because of the following features of in-
terest for the target problem:

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:9

Fig. 2: A Bayesian Network example.

— Their expressiveness allows one to include heterogeneous variables in the same framework
such as Boolean variables (in the optimization vector o) and continuous variables (in the
application characterization α).

— Their capabilities to model cause-effect dependencies. Representing these dependencies is
suitable for the target problem, as we expect that the benefits of some compiler optimizations
(effects) are due to the presence of some application features (causes).

— It is possible to graphically investigate the model to visualize the dependencies among dif-
ferent compiler optimizations. If needed, it is even possible to manually edit the graph for
including some a priori knowledge.

— It is possible to bias the probability distribution of some variables (the optimization vector
o) given the evidence on other variables (the application characterization α). This enables
one to infer an application-specific distribution for the vector o from the vector α observed
by analyzing the target application.

A Bayesian Network is a direct acyclic graph whose nodes represent variables and whose
edges represent the dependencies between these variables. Figure 2 reports a simple example
with one variable α1 representing the application features and two variables o1, o2 represent-
ing different compiler optimizations. In this example, the probability distributions of the two
optimizations depend on the program features represented by α. Additionally, the probability
distribution of o2 depends on whether the optimization o1 is applied. Dashed lines are used for
nodes representing observed variables whose value can be input as evidence to the network.
In this example, the variable α1 can be observed and, by introducing its evidence, it is possible
to bias the probability distributions of other variables.

Training the Bayesian model. Tools exist to construct BN automatically by fitting the
distribution of some training data [Murphy 2001]. To do so, first the graph topology is iden-
tified and then the probability distribution of the variables including their dependencies is
estimated.

The identification of the graph topology is particularly complex and time consuming. The
dimension reduction technique applied on the SW features plays a key role in obtaining rea-
sonable training times by limiting to k elements in the vector α, thus reducing the number of
nodes in the graph.

For efficiency reasons, the algorithm used for selecting the graph topology is an heuristic
algorithm, named K2, initialized with the Maximum Weight Spanning Tree (MWST) ordering
method as suggested in the Matlab toolbox in use [Murphy 2001]. The initial ordering of the
nodes for the MWST algorithm is given to let the elements α to appear first and then the
elements of o. Even if the final topological sorting of the nodes changes according to the al-
gorithm described in [Heckerman and Chickering 1995], by using this initialization criterion,
it always happens that the dependencies are directed from elements of α to elements of o
and not vice versa. When using the K2 algorithm, the network topology is selected as follows.
The graph is initialized with no edges to represent the fact that each variable is independent.
Then, for each variable i, following their initial ordering, each possible edge from j to i (where
j < i) is considered as candidate to be added to the network. A candidate edge is added to the
topology if it increases the probability that the training data were generated from the proba-

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:10 A. H. Ashouri et al.

bility distribution the new topology describes. This method has a polynomial complexity with
respect to the number of variables involved and the number of lines in the training data set.

During the model training, we consider the softmax function for modeling the cumulative
probability distribution of the Boolean elements in vector o [Murphy 2001]. This is a math-
ematical necessity to map in the Bayesian framework the dependencies of Boolean variables
in o with respect to continuous variables in α. In particular, thanks to the use of softmax
variables, we can express the conditional probability P (oi = b | αj = x), where oi is a Boolean
variable and αj is a continuous variable.

The coefficients of the functions describing the probability distribution of each variable
as well as their dependencies are tuned automatically to fit the distribution in the training
data [Murphy 2001]. Training data are gathered by analyzing a set A of training appli-
cations (Figure 1a). First, application features are computed for each application a ∈ A
to enable the principal component analysis. Thus, each application is characterized by its
own principal component vector α. Then, an experimental compilation campaign is carried
out for each application by sampling several compiler optimization sequences from the
compiler optimization space O with a uniform distribution. For each application, we select
the 15% best-performing compilation sequences among the sampled ones. The distribution
of these sequences is learned by the Bayesian Network framework in relation to vector α
characterizing the application.

Inferring an application-specific distribution. Once the Bayesian Network has been
trained, the principal component vector α obtained for a new application can be fed as ev-
idence to the framework to bias the distribution of the compiler optimization vector o. To
sample a compiler optimization sequence from this biased distribution, we proceed as follows.
The nodes in the direct acyclic graph describing the Bayesian Network are sorted in topologi-
cal order, i.e. if a node at position i has some predecessors, those appear at positions j, j < i. At
this point, all nodes representing the variables α appear at the first positions2. The value of
each compiler optimization oi is sampled in sequence by following the topological order such
that all its parent nodes have been decided. Thus, the marginal probability P (oi = 0 | P) and
P (oi = 1 | P) can be computed on the basis of the parent node vector value P (each parent
being either an evidence αj or a previously sampled compiler optimization oj). Similarly, by
using the maximum likelihood method, it is possible to compute the most probable vector from
this biased probability distribution. When sampling from the application-specific probability
distribution inferred through the Bayesian Network, we always consider to return the most
probable optimization sequence as first sample.

4. EXPERIMENTAL EVALUATION
The goal of this section is to assess the benefits of the proposed methodology. In this work, we
run the experimental campaign on an ARMv7 Cortex-A9 architecture as part of a TI-OMAP
4430 processor [Instruments 2012] with ArchLinux and GCC-ARM 4.6.3.

4.1. Benchmark Suites
To assess the proposed methodology, we have used two major benchmark suites separately:
i) cBench [Fursin 2010] and ii) PolyBench [Grauer-Gray et al. 2012; Pouchet 2012]. Each con-
sists of different classes of applications and kernels ranging from security and cryptography
algorithms to office and image-processing applications. Readers can refer to Table I for the list
of applications selected in the two benchmark suites.

2This is by construction due to the initialization of the MWST and the K2 algorithms used to discover the network
topology.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:11

Table I: Benchmark suites used in this work
(a) cBench applications selected for this work

cBench list Description
automotive bitcount Bit counter
automotive qsort1 Quick sort
automotive susan c Smallest Univalue Segment Assimilating Nucleus Corner
automotive susan e Smallest Univalue Segment Assimilating Nucleus Edge
automotive susan s Smallest Univalue Segment Assimilating Nucleus S
security blowfish d Symmetric-key block cipher Decoder
security blowfish e Symmetric-key block cipher Encoder
security rijndael d AES algorithm Rijndael Decoder
security rijndael e AES algorithm Rijndael Encoder
security sha NIST Secure Hash Algorithm
telecom adpcm c Intel/dvi adpcm coder/decoder Coder
telecom adpcm d Intel/dvi adpcm coder/decoder Decoder
telecom CRC32 32 BIT ANSI X3.66 crc checksum files
consumer jpeg c JPEG kernel
consumer jpeg d JPEG kernel
consumer tiff2bw convert a color TIFF image to grey scale
consumer tiff2rgba convert a TIFF image to RGBA color space
consumer tiffdither convert a TIFF image to dither noisespace
consumer tiffmedian convert a color TIFF image to create a TIFF palette file
network dijkstra Dijkstra’s algorithm
network patricia Patricia Trie data structure
office stringsearch1 Boyer-Moore-Horspool pattern match
bzip2d BurrowsWheeler compression algorithm
bzip2e BurrowsWheeler compression algorithm

(b) Linear-algebra/applications of the PolyBench suite selected
for this work

PolyBench list Description
2mm 2 Matrix Multiplications (D=AB; E=CD)
3mm 3 Matrix Multiplications (E=AB; F=CD; G=EF)
atax Matrix Transpose and Vector Multiplication
bicg BiCG Sub Kernel of BiCGStab Linear Solver
cholesky Cholesky Decomposition
doitgen Correlation Computation
gemm Matrix-multiply C = AB + C
gemver Vector Multiplication and Matrix Addition
gesummv Scalar, Vector and Matrix Multiplication
mvt Matrix Vector Product and Transpose
symm Symmetric matrix-multiply
syr2k Symmetric rank2k operations
syrk Symmetric rankk operations
trisolv Triangular solver
trmm Triangular matrix-multiply

4.1.1. cBench. The cBench suite [Fursin 2010] is a collection of open-source programs with
multiple data sets assembled by the community to enable realistic workload execution and
targeted by many different compilers such as GCC, LLVM, etc.. The source code of individual
programs is simplified to facilitate portability; therefore, it has been targeted in autotuning
and iterative compilation research work. Of the available data sets for every individual kernel,
we have selected five and sorted them in a way that dataset1 is always the smallest and
dataset5 the largest. This ensures that for every kernel we have exposed enough of the input
load to be able to measure fair runtime executions.

4.1.2. PolyBench. The PolyBench benchmark suite [Pouchet 2012; Grauer-Gray et al. 2012]
consists of benchmarks with static control parts. The purpose is to make the execution and
monitoring of applications uniform. One of the main features of the PolyBench suite is that
there is a single file per application, tunable at compile-time and used for kernel instrumen-

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:12 A. H. Ashouri et al.

Table II: Compiler optimizations under analysis (beyond -O3)

Compiler Transformation Abbreviation Short Description
-funsafe-math-optimizations math-opt Allow optimizations for floating-point arith-

metic that (a) assume valid arguments and
results and (b) may violate IEEE or ANSI
standards.

-fno-guess-branch-probability fn-gss-br Do not guess branch probabilities using
heuristics.

-fno-ivopts fn-ivopt Disable induction variable optimizations on
trees.

-fno-tree-loop-optimize fn-tree-br Disable loop optimizations on trees
-fno-inline-functions fn-inline Disable optimization that inline all simple

functions.
-funroll-all-loops funroll-lo Unroll all loops, even if their number of iter-

ations is uncertain
-O2 O2 Overwrite the -O3 optimization level by dis-

abling some optimizations involving a space-
speed trade-off

tation. It performs extra operations such as cache flushing before the execution, and can set
real-time scheduling to prevent OS interference. We have defined two different data sets for
each individual application to expose the main function with different input loads. PolyBench
has a variety of benchmarks, i.e. 2D and 3D matrix multiplication, vector decomposition, etc..
This suite is also suitable for parallel programming, which is beyond the focus of this work.

4.2. Compiler Transformations
The compiler transformations analyzed have been reported in Table II. We based our design
space on the work of [Chen et al. 2012]. The authors implemented sensitivity analysis over a
vast majority of the compiler optimizations and defined with a list of promising passes. Build-
ing upon their work, we selected the compiler optimizations with a speedup factor greater than
1.10. They are applied to improve application performance beyond the standard optimization
level -O3 and have not yet been included in any prior optimization level. The optimizations
can be enabled/disabled by means of the respective compiler optimization flags. The standard
optimization level -O3 has been also used to collect the dynamic software-features for each
application on both training and inference phases.

The application execution time has been estimated by using the Linux-perf tool. The execu-
tion time is done by averaging five loop-wraps of the specific compiled binary with one second
of sleep in between five different executions of those loop-wraps. Therefore, in total, each in-
dividual transformed binary has been executed 25 times as five packages of five loop-wraps to
ensure better accuracy of estimations and fairness among the generation of executions. This
technique is used both in the training and the inference phases.

4.3. Bayesian Network Results
In this work, Matlab environment [Murphy 2001; Santana et al. 2010] has been used to train
the Bayesian Network. We have used Exploratory Factor Analysis (EFA) of application fea-
tures for the seven compiler optimization flags listed in Table II. As stated in Section 3.2, one
of the features of using EFA is that the factors are linear combinations that maximize the
shared portion of the variance. Therefore, as prerequisite, the covariance matrix should be
positive definite. This pre-processing helps purify the highly correlated application character-
ization columns that are linearly correlated. In theory, PCA accepts any matrix ignoring the
aforementioned condition and that is why we think applying factor analysis as our dimension
reduction technique tends to obtain the most important factors and correlate them with the

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:13

Table III: Kaiser test results

Application Characterization
Method

Original
No. of

Factors

Range of
Selected

Factors By
Kaiser Test

cBench MICA (Dynamic) 99 [7-11]
cBench MILEPOST (Static) 53 [4-6]
cBench Hybrid 143 [8-10]
polyBench MICA (Dynamic) 99 [5-7]
polyBench MILEPOST (Static) 53 [4-6]
polyBench Hybrid 143 [4-5]

compiler optimizations. Decision on the numbers of factors have been derived from the Kaiser
test [Kaiser 1958]. This test implies taking only the factors having greater than 1 in the co-
variance matrix. In other words, the Kaiser rule is to drop all components with eigenvalues
under 1, this being the eigenvalue equal to the information accounted for by an average single
item. Table III reports the factors derived for each individual benchmark and characterization
method.

Table III represents the number of features that have been produced both originally by the
different feature selection techniques and by the Kaiser test. The third column is the original
number of features and the last one refers to range of selected factors in each specific bench-
mark suite/feature selection method. Note that the last column reports the range of selected
factors rather than a number as we have used cross-validation approach in the experimen-
tal campaign, thus different applications/datasets/feature selection techniques can result in a
different number of factors to be used in COBAYN’s framework.

In this work, while training has been carried out using each application/dataset pair sep-
arately, the validation has been done through an application-level cross-validation (Leave-
One-Out cross-validation, LOO). We train different BNs, each by excluding an applications
(together with all its input dataset) from the training set.

Using BN enables us to investigate graphically the dependencies between the variables in-
volved in the compiler optimization problem and to correlate them with the selected factors of
the program characterization. We train a final Bayesian Network including all applications in
the training set. The resulting network topology is a directed acyclic graph DAG, as shown in
Figure 3. By removing security rijndael e application from the training set, the graph topology
slightly changes, mainly in terms of the different edges connecting the Principal Components
(PC)/program factors (FA) nodes to the compiler optimization nodes. This is due to the change
in the program features and its factors, which are computed in a different way. For the sake
of conciseness, we do not report all graph topologies derived by the LOO technique for each
individual trained Bayesian Network.

The Nodes of the topology graph reported in Figure 3 are organized in layers. The first layer
reports the FAs that are the observable variables (reported as dashed lines). The second layer
contains the compiler optimizations whose parents are the PC nodes (or FA nodes depending
weather PCA or EFA is used). Therefore the effects of these compiler optimizations depend
only on the application characterization in terms of its features. In the third layer, the compiler
optimization nodes whose parents include optimization nodes from the second layer are listed.
Once a new application is characterized for a target application data set, the evidence related
to the PCs (or FAs) of its features is fed to the network in the first layer. Then, the probability
distributions of other nodes can be inferred in turn on the second and third layers. There are
two nodes in the third layer of Figure 3. The first one is the fn-gss-br node that depends on
funroll-lo because unrolling loops impacts the predictability of the branches implementing
these loops. Moreover, funroll-lo impacts the effectiveness of the heuristic branch probability

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:14 A. H. Ashouri et al.

PC.1 PC.2 PC.3 PC.4 PC.5 PC.6 PC.7 PC.8 PC.9 PC.10

math−opt

fn−gss−br fn−ivopt

fn−tree−opt fn−inline funroll−lo O2

Fig. 3: Topology of the Bayesian Network if security rijndael e is left out of the training set

estimation, thus fn-gss-br. The second node in the third layer is the fn-ivopt node, which
depends on fn-tree-opt as parent node in the second layer. Both these optimizations work on
trees and therefore their effects are interdependent. While sampling compiler optimizations
from the Bayesian Network, the decisions of whether to apply fn-gss-br and fn-ivopt are taken
after deciding whether to apply funroll-lo and fn-tree-opt.

Table IV shows the fine-grain breakdown of the timing when we use COBAYN framework.
We have reported the time spent for each phase of the proposed technique, both on the train-
ing phase (done offline) and on the inference phase (done online). Constructing COBAYNs
network is a one-time process and depends on the number of applications in the training set.
The time needed to collect the training data is on the other side, dependents not only on the
number but also on the applications and data-set used for the training. The same happens
for the time needed for compiling and executing the target application during the online com-
piler autotuning phase. To that end, Table IV reports the numbers for each specific phase
considering the cBench as training set and Susan as target application. During the offline
training-phase, the time needed for data collection on the case of cBench, is around 2 days.
It includes the time needed for each benchmark to compile and execute, considering all set of
configuration and the feature collection phase. The time needed to post-process the data and
to generate the Bayesian Network model is around 70 seconds.

During the online phase (inference phase), the time needed for extracting the software fea-
tures from the target application is 14.4 seconds while, querying BN is less than 1 second.
The compilation and execution-time on the target platform for Susan are 4.5 and 8.9 seconds,
respectively. Those numbers show that the initial overhead in adopting the proposed method-
ology on the user-side (composed of the software feature extraction and BN inference) is less
than 2 compilation/executions pairs, for this specific example.

4.4. Comparison Results
It is well known that Random Iterative Compilation (RIC) can improve application perfor-
mance compared with static handcrafted compiler optimization sequences [Agakov et al.
2006]. Additionally, given the complexity of the iterative compilation problem, it has been
proved that drawing compiler optimization sequences at random is as good as applying other
optimization algorithms such as genetic algorithms or simulated annealing [Agakov et al.
2006; Cavazos et al. 2007; Chen et al. 2012]. Accordingly, to evaluate the proposed approach,
we compared our results with i) standard optimization levels -O2 and -O3 ii) the Random
Iterative Compilation (RIC) methodology that samples compiler optimization sequences from

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:15

Table IV: COBAYN timing breakdown for offline training and online inference for Susan ap-
plication

Phase Tag & Category Time

Offline training
(A) Offline data-collection 2 days
(B) Construct BN 70 sec

Online inference
(C) SW Feature Collection 14.4 sec
(D) BN Inference 0.85 sec
(E) Susan compilation 4.5 sec
(F) Susan execution 8.9 sec

Table V: COBAYN (BN using EFA) speedup w.r.t standard optimization levels (-O2 and -O3)
and Random Iterative Compilation (RIC) and our previous approach of BN in [Ashouri et al.
2014] using PCA

Benchmarks Features COBAYN Speedup w.r.t
-O2 -O3 RIC BN w/ PCA

cBench Dynamic 1.6093 1.528 1.2029 1.0744
cBench Static 1.5447 1.478 1.1143 1.0543
cBench Hybrid 1.5858 1.5066 1.2086 1.0654

cBench Average 1.5795 1.5035 1.1743 1.0617
PolyBench Dynamic 1.9845 1.8387 1.3230 1.0921
PolyBench Static 1.9353 1.8215 1.1518 1.0724
PolyBench Hybrid 1.9441 1.7726 1.2333 1.1078

PolyBench Average 1.9541 1.8101 1.2350 1.0901
Overall (Harmonic Mean) 1.7669 1.6571 1.2052 1.0771

the uniform distribution and iii) two advanced state-of-the-art methodologies, namely a) (Sec-
tion 4.6.1) coupling machine learning with an iterative methodology, and b) (Section 4.6.2) a
non-iterative methodology derived by predictive modeling based on different machine-learning
algorithms to predict the final application speedup.

The proposed methodology samples different compiler optimization sequences from the BN.
The performance achieved by the best application binary depends on the number of sequences
sampled from the model. In this section, the result of applying the proposed methodology using
two benchmark suites with respect to standard optimization levels and the random iterative
compilation have been reported. The performance speedup on the first comparison section is
measured in reference to -O2 and -O3, which are the optimization levels available for GCC. In
addition, we show the speedup of the proposed methodology with respect to our previous work
[Ashouri et al. 2014].

4.4.1. Bayesian Networks Performance Evaluation. Table V reports COBAYN’s speedup achieved
over the standard optimization levels of -O2 and -O3 and Random Iterative Compilation (RIC).
The last column represents the average speedup achieved by revising our Bayesian Network
engine and using the Explanatory Factor Analysis (EFA) described in the Section 3.2 with re-
spect to PCA in [Ashouri et al. 2014]. Note that all speedup values have been averaged using
Harmonic mean. It is observed that in all categories, COBAYN outperforms standard opti-
mization levels and the previous approach. The comparison with respect to the RIC has been
reported by the Harmonic average over the speedup data derived by dividing the COBAYN’s
performance data by the RIC data in full space. It can be seen that dynamic feature selec-
tion brings best results followed by the hybrid and static method. However, in certain cases

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:16 A. H. Ashouri et al.

1

1.5

2

2.5

3

co
ns
um
er
 j
pe
g
d

au
to
mo
ti
ve
 b
it
co
un
t

co
ns
um
er
 t
if
fm
ed
ia
n

te
le
co
m
ad
pc
m
c

co
ns
um
er
 j
pe
g
c

se
cu
ri
ty
 b
lo
wf
is
h
e

au
to
mo
ti
ve
 s
us
an
 s

te
le
co
m
ad
pc
m
d

au
to
mo
ti
ve
 q
so
rt
1

co
ns
um
er
 t
if
f2
rg
ba

au
to
mo
ti
ve
 s
us
an
 c

bz
ip
2d

te
le
co
m
CR
C3
2

bz
ip
2e

au
to
mo
ti
ve
 s
us
an
 e

se
cu
ri
ty
 r
ij
nd
ae
l
e

se
cu
ri
ty
 r
ij
nd
ae
l
d

se
cu
ri
ty
 b
lo
wf
is
h
d

of
fi
ce
 s
tr
in
gs
ea
rc
h1

co
ns
um
er
 t
if
f2
bw

co
ns
um
er
 t
if
fd
it
he
r

se
cu
ri
ty
 s
ha

ne
tw
or
k
di
jk
st
ra

ne
tw
or
k
pa
tr
ic
ia

P
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t

w
.
r
.
t

-
O
3

a
n
d

-
O
2

w.r.t -O2

w.r.t -O3

(a) BN with dynamic features on cBench

1

1.5

2

2.5

3

3.5

4

4.5

ge
mm

3m
m

2m
m

do
it
ge
n

at
ax

tr
is
ol
v

sy
r2
k

bi
cg

ch
ol
es
ky

tr
mm

sy
mm

ge
mv
er

mv
t

ge
su
mm
v

sy
rk

P
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t

w
.
r
.
t

-
O
3

a
n
d

-
O
2

w.r.t -O2

w.r.t -O3

(b) BN with dynamic features on PolyBench

1

1.5

2

2.5

3

au
to
mo
ti
ve
 b
it
co
un
t

co
ns
um
er
 j
pe
g
c

co
ns
um
er
 t
if
fm
ed
ia
n

co
ns
um
er
 j
pe
g
d

te
le
co
m
ad
pc
m
c

se
cu
ri
ty
 b
lo
wf
is
h
e

au
to
mo
ti
ve
 s
us
an
 s

au
to
mo
ti
ve
 q
so
rt
1

bz
ip
2d

co
ns
um
er
 t
if
f2
rg
ba

te
le
co
m
ad
pc
m
d

se
cu
ri
ty
 r
ij
nd
ae
l
d

au
to
mo
ti
ve
 s
us
an
 c

bz
ip
2e

te
le
co
m
CR
C3
2

au
to
mo
ti
ve
 s
us
an
 e

se
cu
ri
ty
 r
ij
nd
ae
l
e

of
fi
ce
 s
tr
in
gs
ea
rc
h1

co
ns
um
er
 t
if
f2
bw

se
cu
ri
ty
 b
lo
wf
is
h
d

co
ns
um
er
 t
if
fd
it
he
r

se
cu
ri
ty
 s
ha

ne
tw
or
k
di
jk
st
ra

ne
tw
or
k
pa
tr
ic
ia

P
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t

w
.
r
.
t

-
O
3

a
n
d

-
O
2

w.r.t -O2

w.r.t -O3

(c) BN with static features on cBench

1

1.5

2

2.5

3

3.5

4

4.5

ge
mm

3m
m

2m
m

do
it
ge
n

sy
r2
k

at
ax

sy
mm

ch
ol
es
ky

tr
is
ol
v

bi
cg

sy
rk

tr
mm

ge
mv
er

mv
t

ge
su
mm
v

P
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t

w
.
r
.
t

-
O
3

a
n
d

-
O
2

w.r.t -O2

w.r.t -O3

(d) BN with static features on PolyBench

1

1.5

2

2.5

3

co
ns
um
er
 j
pe
g
d

au
to
mo
ti
ve
 b
it
co
un
t

co
ns
um
er
 t
if
fm
ed
ia
n

te
le
co
m
ad
pc
m
c

co
ns
um
er
 j
pe
g
c

se
cu
ri
ty
 b
lo
wf
is
h
e

au
to
mo
ti
ve
 q
so
rt
1

au
to
mo
ti
ve
 s
us
an
 s

bz
ip
2d

se
cu
ri
ty
 r
ij
nd
ae
l
e

au
to
mo
ti
ve
 s
us
an
 c

te
le
co
m
ad
pc
m
d

te
le
co
m
CR
C3
2

se
cu
ri
ty
 r
ij
nd
ae
l
d

co
ns
um
er
 t
if
f2
rg
ba

bz
ip
2e

au
to
mo
ti
ve
 s
us
an
 e

co
ns
um
er
 t
if
f2
bw

se
cu
ri
ty
 b
lo
wf
is
h
d

of
fi
ce
 s
tr
in
gs
ea
rc
h1

co
ns
um
er
 t
if
fd
it
he
r

se
cu
ri
ty
 s
ha

ne
tw
or
k
di
jk
st
ra

ne
tw
or
k
pa
tr
ic
ia

P
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t

w
.
r
.
t

-
O
3

a
n
d

-
O
2

w.r.t -O2

w.r.t -O3

(e) BN with dynamic+static features on cBench

1

1.5

2

2.5

3

3.5

4

4.5

ge
mm

3m
m

2m
m

do
it
ge
n

tr
is
ol
v

at
ax

bi
cg

ch
ol
es
ky

sy
r2
k

sy
rk

sy
mm

tr
mm

mv
t

ge
su
mm
v

ge
mv
er

P
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t

w
.
r
.
t

-
O
3

a
n
d

-
O
2

w.r.t -O2

w.r.t -O3

(f) BN with dynamic+static features on PolyBench

Fig. 4: Performance speedup w.r.t -O2 and -O3

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:17

Table VI: Evaluation of different BigSet formation in COBAYN Model Construction. Note that
COBAYN’s default refers to the version of COBAYN trained on a single benchmark set.

BigSet Combination Speedup w.r.t.
COBAYN’s DefaultcBench PolyBench

24 (All) 15 (All) 1.1143
15 15 1.0743
10 10 1.0432
5 5 0.9896

(cBench using hybrid SW features), it narrowly reaches the performance of dynamic feature
selection.

Using two major benchmarks and three different application characterization techniques,
we report six different plots showcasing the benefits of the proposed methodology with respect
to the GCC standard optimization levels. Figure 4, reports the speedups by considering a sam-
ple of eight different compiler optimization sequences. For each benchmark, the results have
been averaged on the different data sets. All results have been sorted by the speedup values of
-O3 and have been matched with their corresponding -O2 value. The bar plot is colored in blue
and red, respectively, for the speedup achieved with respect to -O2 and -O3. All applications
have achieved a speedup in reference to the performance of -O2 and -O3. This happens with
the exception of gemm in reference to -O3 for static and hybrid feature-selection techniques
and consumer-jpeg-d in reference to -O3 when using the dynamic method for feature selection.
These applications reach their best performance using -O3 for two data sets out of five, and it
was not possible to surpass this maximum by relying on the compiler transformations under
consideration. On average for cBench, the speedups are of 1.57 and 1.5 in reference to -O2 and
-O3, respectively, and 1.95 and 1.81 for PolyBench. The maximum speedup observed is 3.1×
and 4.7×. Table V reports the speedup gained using COBAYN compared with the standard op-
timization levels, Random Iterative Compilation (RIC) and our previous approach exploiting
PCA as dimension-reduction method.

Analysis of the Portability of COBAYN in Different Scenarios. The results reported in this
section are computed by means of LOO cross-validation on the two individual benchmark
suites separately, one with 24 and the other with 15 applications. As the nature of these two
benchmark suites is totally different, we believed it would be unfair to train on one and test
on the other, so we analyzed the feasibility of mixing these applications in a fair heteroge-
neous set of BigSet so that COBAYN’s engine gets evaluated. To this end, we tried 4 different
scenarios, where the BigSet is obtained by: (i) including all 39 available applications, (ii) 15
applications of cBench and 15 applications of PolyBench, (iii) selecting 10 cBench and 10 Poly-
Bench and finally (iv) 5 applications from each of those. Therefore, the BigSet was initialized
with 39, 30, 20 and 10 different applications, and LOO cross-validation was carried-out. Ta-
ble VI reports the speedup gained in these scenarios. It is observed that COBAYN framework
benefits from having a) more applications, and b) heterogeneous applications in the training
set. The speedup listed in Table VI is higher when BigSet accounts for more applications and,
even just 10 applications per benchmark suite, it is higher than one (the default setting for
the experimental results in this work refers to the COBAYN trained only on one of the two
benchmark suites).

4.4.2. Performance Improvement. Let us define the Normalized Performance Improvement (NPI)
as the ratio of the performance improvement achieved over the potential performance im-
provement:

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:18 A. H. Ashouri et al.

NPI =
Eref − E

Eref − Ebest
(1)

where E is the execution time achieved by the methodology under consideration, Eref is the
execution time achieved with a reference compilation methodology and Ebest is the best exe-
cution time computed through an exhaustive exploration of all possible compiler optimization
sequences (in our case 128 different sequences). As the execution time E of the iterative com-
pilation methodology under analysis gets closer to the reference execution time Eref , the NPI
gets closer to 0, reporting that no improvement is returned. In the same way, as E gets closer
to the best execution time Ebest, while NPI gets close to 1, reporting that the entire potential
performance improvement has been achieved.

Figure 5 reports for six different benchmark/feature selection methods; the NPI achieved by
the proposed optimization technique and by the RIC technique in reference to the execution
time obtained by -O3 (Eref). It is noticeable that NPI has the upper-hand on performance
on every number of extractions with respect to RIC. For readability purposes, we have only
reported the first 50 extraction of the design space. The trend is continuously applied to the
rest of the extractions until both get the maximum performance value of 1 at extraction no.
128, which accounts for the optimal compiler sequence given the specific application (also it
is the optimal performance using exhaustive search). The comparisons reported in Figure 5
were carried out by considering the same number of compiler optimization sequences sampled
for both the RIC and the proposed approach. We acknowledge the fact that there is still room
for improvement in future work. However, NPI figures show that in all cases, the proposed
method was superior in terms of performance and that 30 extractions, on the current scale,
reach 80% of the optimality.

4.5. A Practical Usage Assessment
When using iterative compilation in realistic cases, we need to decide how much effort should
be spent on the optimization itself. This effort can be measured in terms of optimization time,
which is directly proportional to the number of compilations to be executed. Thus, in this sec-
tion, we evaluate the proposed optimization approach in terms of the application performance
reached after a fixed number of compilations. In particular, we fix this number to eight which
represents 6.25% of the overall optimization space. Our model has been compared with RIC
and in Figure 6, we report the violin plot for application speedup, while keeping the compila-
tion effort of the proposed methodology to eight compilations (or extractions) and varying the
compilation efforts of the RIC to explore more compiler space in the long run. Each individ-
ual distribution in Figure 6 represents the performance of the proposed work with respect to
RIC across different extractions. The red cross marks the mean and the green square marks
the median of each violin distribution. It can be seen that the proposed methodology with
BN inference achieved an at least 3× reduction in exploration process effort compared with
the same extraction of RIC. Here we define exploration speedup as the factor measuring the
aforementioned metrics, enabling the researchers to traverse the compiler design space more
efficiently.

Accordingly, by increasing the compilation efforts on RIC, while keeping the exploration
efforts of the proposed approach constant, the application speedup of COBAYN decreases.
On average, RIC needs 24-32 extractions to achieve the application performance obtained
with eight extractions by COBAYN. This means that COBAYN provides a speedup of 3-4× in
terms of optimization efforts, that is only slightly impacted by the initial overhead (less than
2 evaluations) reported in Section 4.3. Furthermore, at the most extreme case, when RIC
exhaustively enumerates and explores the full-space, 8 extractions of COBAYN, on average,
still could gain up to 91% of the optimal solution. This is shown on the final distribution of
each violin plot separated by a vertical dashed-line.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:19

number of extractions
0 5 10 15 20 25 30 35 40 45 50

p
e
r
fo

r
m

a
n

c
e
 i
m

p
r
o

v
e
m

e
n

t
 w

.r
.t

.
it

e
r
a
ti

v
e
 c

o
m

p
il
a
ti

o
n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

BN with Dynamic Features
Iterative Compilation

(a) BN with dynamic features on cBench

number of extractions
0 5 10 15 20 25 30 35 40 45 50

p
e

r
f
o

r
m

a
n

c
e

 i
m

p
r
o

v
e

m
e

n
t

 w
.r

.t
.

it
e

r
a

t
iv

e
 c

o
m

p
il

a
t
io

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

BN with Dynamic Features
Iterative Compilation

(b) BN with dynamic features on PolyBench

number of extractions
0 5 10 15 20 25 30 35 40 45 50

p
e

r
f
o

r
m

a
n

c
e

 i
m

p
r
o

v
e

m
e

n
t

 w
.r

.t
.

it
e

r
a

t
iv

e
 c

o
m

p
il

a
t
io

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

BN with Static Features
Iterative Compilation

(c) BN with static features on cBench

number of extractions
0 5 10 15 20 25 30 35 40 45 50

p
e

r
f
o

r
m

a
n

c
e

i
m

p
r
o

v
e

m
e

n
t

w

.
r
.
t
.

i
t
e

r
a

t
i
v

e

c

o
m

p
i
l
a

t
i
o

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

BN with Static Features
Iterative Compilation

(d) BN with static features on PolyBench

number of extractions
0 5 10 15 20 25 30 35 40 45 50

p
e
r
f
o

r
m

a
n

c
e

i
m

p
r
o

v
e
m

e
n

t

w

.
r
.
t
.

i
t
e
r
a
t
i
v
e

c
o

m
p

i
l
a
t
i
o

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

BN with Dynamic+Static Features
Iterative Compilation

(e) BN with hybrid features on cBench

number of extractions
0 5 10 15 20 25 30 35 40 45 50

p
e

r
f
o

r
m

a
n

c
e

 i
m

p
r
o

v
e

m
e

n
t

 w
.r

.t
.

it
e

r
a

t
iv

e
 c

o
m

p
il

a
t
io

n

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

BN with Dynamic+Static Features
Iterative Compilation

(f) BN with hybrid features on PolyBench

Fig. 5: Normalized performance improvement (NPI) w.r.t. RIC model

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:20 A. H. Ashouri et al.

Evaluations (Number of extractions from Random Iterative Compilation)
8 16 24 32 40 48 56 64 128

P
e
rf

o
rm

a
n

c
e

 o
f

8
 e

x
tr

a
c
ti

o
n

s
 f

ro
m

 B
N

 m
o

d
e
l

w
.r

.t
.
R

a
n

d
o

m

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a) BN with dynamic features on cBench

Evaluations (Number of extractions from Random Iterative Compilation)
8 16 24 32 40 48 56 64 128

P
e
rf

o
rm

a
n

c
e

 o
f

8
 e

x
tr

a
c
ti

o
n

s
 f

ro
m

 B
N

 m
o

d
e
l

w
.r

.t
.
R

a
n

d
o

m

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(b) BN with dynamic features on PolyBench

Evaluations (Number of extractions from Random Iterative Compilation)
8 16 24 32 40 48 56 64 128

P
e

rf
o

rm
a
n

c
e
 o

f
8

 e
x
tr

a
c
ti

o
n

s
 f

ro
m

 B
N

 m
o

d
e

l
w

.r
.t

.
R

a
n

d
o

m

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c) BN with static features on cBench

Evaluations (Number of extractions from Random Iterative Compilation)
8 16 24 32 40 48 56 64 128

P
e

rf
o

rm
a
n

c
e
 o

f
8

 e
x
tr

a
c
ti

o
n

s
 f

ro
m

 B
N

 m
o

d
e

l
w

.r
.t

.
R

a
n

d
o

m

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(d) BN with static features on PolyBench

Evaluations (Number of extractions from Random Iterative Compilation)
8 16 24 32 40 48 56 64 128

P
e
rf

o
rm

a
n

c
e

 o
f

8
 e

x
tr

a
c
ti

o
n

s
 f

ro
m

 B
N

 m
o

d
e

l
w

.r
.t

.
R

a
n

d
o

m

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(e) BN with dynamic+static features on cBench

Evaluations (Number of extractions from Random Iterative Compilation)
8 16 24 32 40 48 56 64 128

P
e
rf

o
rm

a
n

c
e

 o
f

8
 e

x
tr

a
c
ti

o
n

s
 f

ro
m

 B
N

 m
o

d
e

l
w

.r
.t

.
R

a
n

d
o

m

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(f) BN with dynamic+static features on PolyBench

Fig. 6: Exploration speedup of 8 extractions w.r.t different evaluations of RIC

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:21

4.6. Comparison with State-of-the-Art Techniques
In this section, we compare the quality of the COBAYN results with respect to approaches that
derived from (A) an iterative compilation and (B) a non-iterative compilation methodology.

4.6.1. Comparison to a Iterative Compilation Methodology. [Agakov et al. 2006] introduced
machine-learning models to focus on the exploration of the compiler optimization for the most
promising region. Their methodology exploits a Markov chain oracle and an independent iden-
tically distributed (IID) probability distribution oracle. These two offline-learnt models bias
certain optimizations over others and replace the uniform probability distribution we applied
earlier for the RIC reference methodology. [Agakov et al. 2006] reports significant speedup
by coupling these machine-learning models with a nearest-neighbor-classifier. When predict-
ing the probability distribution of the best compiler optimizations for a new application, the
classifier first selects the training application having the smallest Euclidean distance in the
feature vector space (derived by PCA). Then it learns the probability distribution of the best
compiler optimizations for this neighboring application either by means of the Markov chain
model or by using an IID model. These probability distribution learnt is then used as the
predicted optimal distribution for the new application. It has been reported that the Markov
chain oracle outperforms the IID oracle, followed by the RIC methodology using a uniform
probability distribution.

We constructs the P (S) probability matrix reported in Section 4.2 and 4.3 of [Agakov et al.
2006] as:

P (SIID) = s1, s1, ..., sL =

L∏
i=1

P (si) (2)

P (SMarkov) = P (s1)

L∏
i=2

P (si|si−1) (3)

where P (SIID) and P (SMarkov) define the probability of the specific sequence with IID and
Markovian property for the optimization t1, t1, ..., tL. Using LOO cross-validation, we find the
closest neighbor for each cBench application trained by the two oracles, and we sample from
their probability distributions. To comply with the original work in [Agakov et al. 2006], we
consider only the five most relevant principal components PCs and account only for the static
program features (also when applying COBAYN). The results are depicted in Figure 7. It
shows that COBAYN is faster in reaching higher speedup values. The results are scaled and
normalized with respect to -O3 by using the NPI value (Equation 1). COBAYN is able to
capture a more realistic probability matrix of the compiler optimization problem and achieves
with faster convergence towards the optimal result. It brings 1.25× and 1.47× speedup with
respect to IID and the Markov oracle, respectively.

4.6.2. Comparison to a Non-iterative Compilation Methodology. [Park et al. 2013], used a polyhedral
compiler framework capable of predicting the speedup for an unseen application. They used
certain loop-optimizations in their design-space and surfed the full-search of the space. They
reported the average speedup gained with respect to standard optimization O3 by using dif-
ferent machine-learning models on WEKA [Hall et al. 2009] machine-learning environment.

i) Their predictive models are based on performance counters that are collected from the
underlying architecture while running the applications. Therefore, the program features to be
exposed to the model are architecture dependent, and the model loses its portability when it
is used for a different architecture.

ii) We also explore a different compiler optimization space. They have explored polyhedral
optimization space including loop transformations, whereas we focus on GCC optimization

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:22 A. H. Ashouri et al.

10
0

10
1

10
2

P
e

r
fo

r
m

a
n

c
e

 c
o

m
p

a
r
is

o
n

 w
.r

.t
 I

ID
-O

r
a

c
le

 a
n

d
 M

A
R

-O
r
a

c
le

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

COBAYN

MAR-Oracle

IID-Oracle

Random

47%

31%

40%

59%

Fig. 7: NRI-scales speedup comparison of COBAYN with IID-oracle and MAR-oracle reported
in [Agakov et al. 2006]

space including loop transformations and other optimizations such as inlining, math opti-
mizations, etc..

iii) Furthermore, our model is based on a statistical analysis and BN, whereas they use a
different set of machine-learning techniques, namely, predictive models. [Park et al. 2013].

Nonetheless, we compare their methodology by applying it to the problem at hand. Table
VII reports the results obtained by using the machine-learning models in [Park et al. 2013] on
our compiler optimization space. We reproduced the data on both 1-shot and 8-shot scenarios
to conform with the number of inference (predictions) COBAYN has in the current work. We
use the Harmonic mean to average the speedup here. Note that Harmonic mean is always
less than or equal to the arithmetic mean [Hoefler and Belli 2015]. In all cases, COBAYN
outperforms the reference methodology; specifically we have at least 1.3× and up to 2.04×
speedup compared with the best achieved results reported in [Park et al. 2013].

5. CONCLUSIONS
This paper presents COBAYN, a methodology to infer by means of a Bayesian framework the
best compiler optimizations to be applied for optimizing the performance of a target appli-
cation. The methodology uses target independent software features to sample a statistical
model built using Bayesian Networks to extract a set of suitable compiler configurations. Fea-
ture reduction techniques have been adopted to reduce the complexity and training time of the
Bayesian model while also eliminating possible noise in the data and improving the quality of
the results. The proposed approach has been evaluated on an ARM-based platform, using GCC
compiler. The experimental results demonstrated that the proposed technique outperforms
both standard optimization levels and state-of-the-art iterative and not iterative compilation
techniques while using the same number of evaluations.

ACKNOWLEDGMENTS

This work is partially supported by the European Commission Call H2020-FET-HPC program under the grant
ANTAREX-671623 and conducted in the context of the joint ASTRON and IBM DOME project and funded by the
Netherlands Organization for Scientific Research (NWO), the Dutch Ministry of EL&I and the Province of Drenthe.

REFERENCES
Felix Agakov, Edwin Bonilla, John Cavazos, Björn Franke, Grigori Fursin, Michael FP O’Boyle, John Thomson, Marc

Toussaint, and Christopher KI Williams. 2006. Using machine learning to focus iterative optimization. In Pro-

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:23

Table VII: COBAYN speedup w.r.t. the average speedup gained with predictive modeling in
both 1-shot and 8-shot scenarios reported in [Park et al. 2013].

Algorithm and Parameter Configuration COBAYN Speedup
w.r.t 1-shot w.r.t 8-shot

LR -S 0 1.7551 1.6673
LR -S 1 1.7590 1.6710
LR -S 2 1.7191 1.6331
SVM NormalizedPolykernel -C 1.0 -E 8.0 1.5437 1.4665
SVM RBFKernel -C 2.0 -G 0.0 1.5206 1.4445
SVM RBFKernel -C 2.0 -G 25.0 1.5082 1.4327
SVM RBFKernel -C 2.0 -G 50.0 1.5045 1.4292
SVM RBFKernel -C 2.0 -G 75.0 1.5029 1.4277
SVM RBFKernel -C 2.0 -G 30.0 1.4927 1.4180
SVM RBFKernel -C 4.0 -G 30.0 1.5073 1.4319
SVM RBFKernel -C 0.01 -G 30.0 1.5073 1.4374
SVM RBFKernel -C 4.0 -G 50.0 1.5045 1.4292
IBk -K 1 1.4447 1.3724
IBk -K 2 1.4667 1.3933
IBk -K 5 1.4887 1.4142
M5P -M 1.0 1.4281 1.3566
M5P -M 2.0 1.4282 1.3567
M5P -M 4.0 1.4282 1.3568
M5P -M 10.0 1.4575 1.3846
M5P -M 50.0 1.4913 1.4167
K* -B 0 -M a 1.5192 1.4432
K* -B 20 -M a 1.5216 1.4455
K* -B 25 -M a 1.5258 1.4495
K* -B 50 -M a 1.4740 1.4003
K* -B 75 -M a 1.4737 1.4001
K* -B 100 -M a 1.5172 1.4413
K* -B 0 -M n 1.5208 1.4447
K* -B 20 -M n 1.5216 1.4455
K* -B 25 -M n 1.5258 1.4495
K* -B 50 -M n 1.4740 1.4003
MLP -L 0.3 -N 500 -H a 2.0435 1.9413
MLP -L 0.05 -N 500 -H a 1.6738 1.5901
MLP -L 0.1 -N 500 -H a 1.7246 1.6383
MLP -L 0.5 -N 500 -H a 1.8138 1.7231
MLP -L 0.9 -N 500 -H a 1.5250 1.4487
MLP -L 0.4 -N 500 -H a 1.9426 1.8454
MLP -L 0.5 -N 1000 -H a 1.8535 1.7608
MLP -L 0.5 -N 1500 -H a 1.7388 1.6518
MLP -L 0.5 -N 500 -H t 1.5579 1.4801
AVERAGE (Harmonic Mean) 1.5622 1.4841

ceedings of the International Symposium on Code Generation and Optimization. IEEE Computer Society, 295–
305.

Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and Saman Amarasinghe. 2009.
PetaBricks: A Language and Compiler for Algorithmic Choice. In Proceedings of the 30th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI ’09). ACM, New York, NY, USA, 38–49.
DOI:http://dx.doi.org/10.1145/1542476.1542481

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly,
and Saman Amarasinghe. 2014. Opentuner: An extensible framework for program autotuning. In Proceedings of
the 23rd international conference on Parallel architectures and compilation. ACM, 303–316.

Amir Hossein Ashouri, Andrea Bignoli, Gianluca Palermo, and Cristina Silvano. 2016. Predictive Modeling Method-
ology for Compiler Phase-Ordering. In Proceedings of 7th Workshop on Parallel Programming and Run-Time
Management Techniques for Many-core Architectures and 5th Workshop on Design Tools and Architectures for
Multicore Embedded Computing Platforms. ACM.

Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, and Cristina Silvano. 2014. A Bayesian network ap-
proach for compiler auto-tuning for embedded processors. In Embedded Systems for Real-time Multimedia (ES-
TIMedia), 2014 IEEE 12th Symposium on. IEEE, 90–97.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

A:24 A. H. Ashouri et al.

Amir Hossein Ashouri, Vittorio Zaccaria, Sotirios Xydis, Gianluca Palermo, and Cristina Silvano. 2013. A framework
for Compiler Level statistical analysis over customized VLIW architecture. In Very Large Scale Integration (VLSI-
SoC), 2013 IFIP/IEEE 21st International Conference on. IEEE, 124–129.

Rajendra Bhatia. 2009. Positive definite matrices. Princeton University Press.
François Bodin, Toru Kisuki, Peter Knijnenburg, Mike O’Boyle, and Erven Rohou. 1998. Iterative compilation in a

non-linear optimisation space. In Workshop on Profile and Feedback-Directed Compilation.
Karsten M Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on graphs. In Data Mining, Fifth IEEE

International Conference on. IEEE, 8–pp.
John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F. P. O’Boyle, and Olivier Temam. 2007. Rapidly

Selecting Good Compiler Optimizations Using Performance Counters. In Proceedings of the International Sympo-
sium on Code Generation and Optimization (CGO ’07). IEEE Computer Society, Washington, DC, USA, 185–197.
DOI:http://dx.doi.org/10.1109/CGO.2007.32

Yang Chen, Shuangde Fang, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Olivier Temam, and Chengyong Wu.
2012. Deconstructing iterative optimization. ACM Transactions on Architecture and Code Optimization (TACO)
9, 3 (2012), 21.

Keith D Cooper, Philip J Schielke, and Devika Subramanian. 1999. Optimizing for reduced code space using genetic
algorithms. In ACM SIGPLAN Notices, Vol. 34. ACM, 1–9.

Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-May OReilly, and Saman Amarasinghe. 2015.
Autotuning algorithmic choice for input sensitivity. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, 379–390.

Shuangde Fang, Wenwen Xu, Yang Chen, Lieven Eeckhout, Olivier Temam, Yunji Chen, Chengyong Wu, and Xiaobing
Feng. 2015. Practical iterative optimization for the data center. ACM Transactions on Architecture and Code
Optimization (TACO) 12, 2 (2015), 15.

Grigori Fursin. 2010. Collective benchmark (cbench), a collection of open-source programs with multiple datasets
assembled by the community to enable realistic benchmarking and research on program and architecture opti-
mization. (2010).

Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam, Mircea Namolaru, Elad
Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, and others. 2011. Milepost gcc: Machine learning enabled
self-tuning compiler. International Journal of Parallel Programming 39, 3 (2011), 296–327.

Grigori Fursin, Cupertino Miranda, Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Ayal Zaks, Bilha Mendelson,
Edwin Bonilla, John Thomson, Hugh Leather, and others. 2008. MILEPOST GCC: machine learning based re-
search compiler. In GCC Summit.

Richard L Gorsuch. 1988. Exploratory factor analysis. In Handbook of multivariate experimental psychology. Springer,
231–258.

Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John Cavazos. 2012. Auto-tuning a high-
level language targeted to GPU codes. In Innovative Parallel Computing (InPar), 2012. IEEE, 1–10.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H Witten. 2009. The
WEKA data mining software: an update. ACM SIGKDD explorations newsletter 11, 1 (2009), 10–18.

David Heckerman and David M. Chickering. 1995. Learning Bayesian networks: The combination of knowledge and
statistical data. In Machine Learning. 20–197.

Torsten Hoefler and Roberto Belli. 2015. Scientific benchmarking of parallel computing systems: twelve ways to
tell the masses when reporting performance results. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 73.

Kenneth Hoste and Lieven Eeckhout. 2007. Microarchitecture-independent workload characterization. IEEE Micro
27, 3 (2007), 63–72.

Kenneth Hoste and Lieven Eeckhout. 2008. Cole: compiler optimization level exploration. In Proceedings of the 6th
annual IEEE/ACM international symposium on Code generation and optimization. ACM, 165–174.

Texas Instruments. 2012. PandaBoard. OMAP4430 SoC dev. board, revision A 2 (2012).
Zhanpeng Jin and A.C. Cheng. 2008. Improve simulation efficiency using statistical benchmark subsetting - An im-

plantbench case study. In Design Automation Conference, 2008. DAC 2008. 45th ACM/IEEE. 970–973.
Henry F Kaiser. 1958. The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 3 (1958),

187–200.
Christos Kartsaklis, Oscar Hernandez, Chung-Hsing Hsu, Thomas Ilsche, Wayne Joubert, and Richard L Graham.

2012. HERCULES: A pattern driven code transformation system. In Parallel and Distributed Processing Sympo-
sium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International. IEEE, 574–583.

Toru Kisuki, Peter MW Knijnenburg, Mike FP O’Boyle, François Bodin, and Harry AG Wijshoff. 1999. A feasibility
study in iterative compilation. In High Performance Computing. Springer, 121–132.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

COBAYN: Compiler Autotuning Framework using Bayesian Networks A:25

Toru Kisuki, Peter M. W. Knijnenburg, and Michael F. P. O’Boyle. 2000. Combined Selection of Tile Sizes and Unroll
Factors Using Iterative Compilation. In Proceedings of the 2000 International Conference on Parallel Architec-
tures and Compilation Techniques (PACT’00), Philadelphia, Pennsylvania, USA, October 15-19, 2000. 237–248.
DOI:http://dx.doi.org/10.1109/PACT.2000.888348

Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson, and Jack W. Davidson. 2009. Practical exhaustive optimization
phase order exploration and evaluation. ACM Trans. Archit. Code Optim. 6, 1, Article 1 (April 2009), 36 pages.
DOI:http://dx.doi.org/10.1145/1509864.1509865

Sameer Kulkarni and John Cavazos. 2012. Mitigating the compiler optimization phase-ordering problem using ma-
chine learning. ACM SIGPLAN Notices 47, 10 (2012), 147–162.

Hugh Leather, Edwin Bonilla, and Michael O’Boyle. 2009. Automatic feature generation for machine learning based
optimizing compilation. In Code Generation and Optimization, 2009. CGO 2009. International Symposium on.
IEEE, 81–91.

Junghsi Lee and V John Mathews. 1994. A stability condition for certain bilinear systems. IEEE transactions on
signal processing 42, 7 (1994), 1871–1873.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. 2005. Pin: building customized program analysis tools with dynamic instrumenta-
tion. In Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and implementation
(PLDI ’05). ACM, New York, NY, USA, 190–200. DOI:http://dx.doi.org/10.1145/1065010.1065034

Luiz GA Martins, Ricardo Nobre, João MP Cardoso, Alexandre CB Delbem, and Eduardo Marques. 2016. Clustering-
Based Selection for the Exploration of Compiler Optimization Sequences. ACM Transactions on Architecture and
Code Optimization (TACO) 13, 1 (2016), 8.

Sanyam Mehta and Pen-Chung Yew. 2015. Improving compiler scalability: optimizing large programs at small price.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation.
ACM, 143–152.

Kevin P. Murphy. 2001. The Bayes Net Toolbox for MATLAB. Computing Science and Statistics 33 (2001), 2001.
Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. 2005. Multi-objective design space exploration of embed-

ded systems. Journal of Embedded Computing 1, 3 (2005), 305–316.
EunJung Park, John Cavazos, and Marco A Alvarez. 2012. Using graph-based program characterization for predictive

modeling. In Proceedings of the Tenth International Symposium on Code Generation and Optimization. ACM,
196–206.

Eunjung Park, John Cavazos, Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and P Sadayappan. 2013. Predictive
modeling in a polyhedral optimization space. International Journal of Parallel Programming 41, 5 (2013), 704–
750.

EunJung Park, Christos Kartsaklis, and John Cavazos. 2014. HERCULES: Strong Patterns Towards More Intelligent
Predictive Modeling. In Parallel Processing (ICPP), 2014 43rd International Conference on. IEEE, 172–181.

Louis-Noël Pouchet. 2012. Polybench: The polyhedral benchmark suite. URL: http://www. cs. ucla. edu/˜
pouchet/software/polybench/[cited July,] (2012).

Suresh Purini and Lakshya Jain. 2013. Finding good optimization sequences covering program space. ACM Transac-
tions on Architecture and Code Optimization (TACO) 9, 4 (2013), 56.

R Ihaka R Gentleman. 2012. R Statistical tool. (2012). http://www.r-project.org/
Roberto Santana, Concha Bielza, Pedro Larranaga, Jose A Lozano, Carlos Echegoyen, Alexander Mendiburu, Rubén

Armananzas, and Siddartha Shakya. 2010. Mateda-2.0: Estimation of distribution algorithms in MATLAB. Jour-
nal of Statistical Software 35, 7 (2010), 1–30.

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2014. Stochastic optimization of floating-point programs with tunable
precision. ACM SIGPLAN Notices 49, 6 (2014), 53–64.

Mark Stephenson, Saman Amarasinghe, Martin Martin, and Una-May O’Reilly. 2003. Meta optimization: improving
compiler heuristics with machine learning. In ACM SIGPLAN Notices, Vol. 38. ACM, 77–90.

Mirai Tanaka and Kazuhide Nakata. 2014. Positive definite matrix approximation with condition number constraint.
Optimization Letters 8, 3 (2014), 939–947.

Wai Teng Tang, Ruizhe Zhao, Mian Lu, Yun Liang, Huynh Phung Huyng, Xibai Li, and Rick Siow Mong Goh. 2015.
Optimizing and auto-tuning scale-free sparse matrix-vector multiplication on Intel Xeon Phi. In Code Generation
and Optimization (CGO), 2015 IEEE/ACM International Symposium on. IEEE, 136–145.

Bruce Thompson. 2002. Statistical,practical, and clinical: How many kinds of significance do counselors need to con-
sider? Journal of Counseling & Development 80, 1 (2002), 64–71.

ACM Transactions on Architecture and Code Optimization, Vol. 0, No. N, Article A, Publication date: 2015.

View publication statsView publication stats

https://www.researchgate.net/publication/303980080

	Binder1.pdf
	COBAYN__green_open_access

