Haptically enabled hands-on or tele-operated surgical robotic systems provide a unique opportunity to integrate pre- and intra-operative information into physical actions through active constraints (also known as virtual fixtures). In many surgical procedures, including cardiac interventions, where physiological motion complicates tissue manipulation, dynamic active constraints can improve the performance of the intervention in terms of safety and accuracy. The non-energy-storing class of dynamic guidance constraints attempt to assist the clinician in following a reference path, while guaranteeing that the control system will not generate undesired motion due to stored potential energy. An important aspect that has not received much attention from the researchers is that while these methods help increase the performance, they should by no means distract the user systematically. In this paper, a viscosity-based dynamic guidance constraint is introduced that continuously redirects the tool's motion towards the reference path. The proportionality and continuity of generated forces make the method less distracting and subjectively appealing. The performance is validated and compared with two existing non-energy-storing methods through extensive experimentation.

A dynamic non-energy-storing guidance constraint with motion redirection for robot-assisted surgery

ENAYATI, NIMA;FERRIGNO, GIANCARLO;DE MOMI, ELENA
2016-01-01

Abstract

Haptically enabled hands-on or tele-operated surgical robotic systems provide a unique opportunity to integrate pre- and intra-operative information into physical actions through active constraints (also known as virtual fixtures). In many surgical procedures, including cardiac interventions, where physiological motion complicates tissue manipulation, dynamic active constraints can improve the performance of the intervention in terms of safety and accuracy. The non-energy-storing class of dynamic guidance constraints attempt to assist the clinician in following a reference path, while guaranteeing that the control system will not generate undesired motion due to stored potential energy. An important aspect that has not received much attention from the researchers is that while these methods help increase the performance, they should by no means distract the user systematically. In this paper, a viscosity-based dynamic guidance constraint is introduced that continuously redirects the tool's motion towards the reference path. The proportionality and continuity of generated forces make the method less distracting and subjectively appealing. The performance is validated and compared with two existing non-energy-storing methods through extensive experimentation.
2016
IEEE International Conference on Intelligent Robots and Systems
9781509037629
9781509037629
Control and Systems Engineering; Software; 1707; Computer Science Applications1707 Computer Vision and Pattern Recognition
File in questo prodotto:
File Dimensione Formato  
A Dynamic Non-Energy Storing Guidance.pdf

accesso aperto

: Publisher’s version
Dimensione 558.02 kB
Formato Adobe PDF
558.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1008843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact