This paper presents a model-based method for condition monitoring of suspensions in a railway bogie. This approach is based on recursive least-square (RLS) algorithm focusing on the 'Input-output' model instead of the 'State Space' model. RLS estimates the unknown parameters from an input-output system by memorizing its correlation properties. The identification of the suspension parameter is achieved by establishing the relationship between the excitation and response of a bogie. A fault detection method for vertical primary dampers of one bogie is illustrated as an example of this scheme. Numerical simulation results from the rail vehicle dynamics software 'ADTreS' are utilized as 'virtual measurements', considering a trailed car of Italian ETR500 high-speed train. Results of the parameter identification performed on the virtual measurements indicate that estimated suspension parameters are consistent with the values adopted in the numerical simulations, thereby supporting the application of this technique for the fault detection and isolation to real cases.

Condition monitoring of rail vehicle suspension based on recursive least-square algorithm

LIU, XIAOYUAN;ALFI, STEFANO;BRUNI, STEFANO
2014

Abstract

This paper presents a model-based method for condition monitoring of suspensions in a railway bogie. This approach is based on recursive least-square (RLS) algorithm focusing on the 'Input-output' model instead of the 'State Space' model. RLS estimates the unknown parameters from an input-output system by memorizing its correlation properties. The identification of the suspension parameter is achieved by establishing the relationship between the excitation and response of a bogie. A fault detection method for vertical primary dampers of one bogie is illustrated as an example of this scheme. Numerical simulation results from the rail vehicle dynamics software 'ADTreS' are utilized as 'virtual measurements', considering a trailed car of Italian ETR500 high-speed train. Results of the parameter identification performed on the virtual measurements indicate that estimated suspension parameters are consistent with the values adopted in the numerical simulations, thereby supporting the application of this technique for the fault detection and isolation to real cases.
Proceedings of the Mini Conference on Vehicle System Dynamics, Identification and Anomalies
9789633131862
9789633131862
Condition monitoring; Fault identification; Input-output model; Recursive least-square; Vehicle suspension; Mechanical Engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1007030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact