GIORGINI, ANDREA

GIORGINI, ANDREA  

DIPARTIMENTO DI MATEMATICA  

Mostra records
Risultati 1 - 20 di 23 (tempo di esecuzione: 0.166 secondi).
Titolo Data di pubblicazione Autori File
ATTRACTORS FOR THE NAVIER-STOKES-CAHN-HILLIARD SYSTEM 1-gen-2022 Giorgini A. +
Continuous data assimilation for the 3D Ladyzhenskaya model: analysis and computations 1-gen-2022 Giorgini A. +
Existence and regularity of strong solutions to a nonhomogeneous Kelvin-Voigt-Cahn-Hilliard system 1-gen-2023 A. Giorgini +
Existence and stability of strong solutions to the Abels–Garcke–Grün model in three dimensions 1-gen-2022 Giorgini A.
Global regularity and asymptotic stabilization for the incompressible Navier–Stokes-Cahn–Hilliard model with unmatched densities 1-gen-2024 H. AbelsH. GarckeA. Giorgini
Global well-posedness and convergence to equilibrium for the Abels-Garcke-Grün model with nonlocal free energy 1-gen-2023 Giorgini, AGrasselli, MPoiatti, A +
Navier–Stokes–Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity 1-gen-2018 DI PLINIO, FRANCESCOGiorgini, AndreaPata, Vittorino +
ON THE EXISTENCE OF STRONG SOLUTIONS TO THE CAHN-HILLIARD-DARCY SYSTEM WITH MASS SOURCE 1-gen-2022 Giorgini A. +
On the mass-conserving Allen-Cahn approximation for incompressible binary fluids 1-gen-2022 A. GiorginiM. Grasselli +
On the separation property and the global attractor for the nonlocal Cahn-Hilliard equation in three dimensions 1-gen-2024 A. Giorgini
Phase-field crystal equation with memory 1-gen-2016 CONTI, MONICAGIORGINI, ANDREAGRASSELLI, MAURIZIO
The Cahn-Hilliard-Hele-Shaw system with singular potential 1-gen-2018 A. GiorginiM. Grasselli +
The Cahn-Hilliard-Oono equation with singular potential 1-gen-2017 A. GiorginiM. Grasselli +
The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures 1-gen-2021 Giorgini A. +
The nonlocal Cahn-Hilliard equation with singular potential: well-posedness, regularity and strict separation property 1-gen-2017 A. GiorginiM. Grasselli +
The nonlocal Cahn-Hilliard-Hele-Shaw system with logarithmic potential 1-gen-2018 A. GiorginiM. Grasselli +
THE SEPARATION PROPERTY FOR 2D CAHN-HILLIARD EQUATIONS: LOCAL, NONLOCAL AND FRACTIONAL ENERGY CASES 1-gen-2023 Giorgini A.Grasselli M. +
Two-Phase Flows with Bulk–Surface Interaction: Thermodynamically Consistent Navier–Stokes–Cahn–Hilliard Models with Dynamic Boundary Conditions 1-gen-2023 Giorgini A. +
Uniqueness and regularity for the Navier-Stokes-Cahn-Hilliard system 1-gen-2019 Giorgini A. +
Weak and strong solutions to the nonhomogeneous incompressible Navier-Stokes-Cahn-Hilliard system 1-gen-2020 Giorgini A. +